VMEbus Extensions for Instrumentation

� EMBED Word.Picture.6 �����

	bus

Fast Data Channel Specification

VXIbusVXI-10

Revision 2.10

May 18, 1995��

NOTICE

The information contained in this document is subject to change without notice.

The VXIbusVXI Consortium, Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The VXIbus Consortium, Inc. shall not be liable for errors contained herein or for incidental or consequential damages in connections with the furnishing, performance, or use of this material.

VMEbus Extensions for Instrumentation: Fast Data Channel Specification, VXI-10 Revision 2.10 is authored by the VXIbus Consortium, Inc. and its sponsor members.

This document is in the public domain. Permission is granted to reproduce and distribute this document by any means for any purpose.

�

�Table of Contents

� TOC \o "1-4" �A. Introduction	� GOTOBUTTON _Toc325521967 � PAGEREF _Toc325521967 �1��

A.1 Description	� GOTOBUTTON _Toc325521968 � PAGEREF _Toc325521968 �1��

A.2 Vocabulary	� GOTOBUTTON _Toc325521969 � PAGEREF _Toc325521969 �3��

A.3 FDC Memory Allocation Map	� GOTOBUTTON _Toc325521970 � PAGEREF _Toc325521970 �5��

B. FDC Devices General Requirements	� GOTOBUTTON _Toc325521971 � PAGEREF _Toc325521971 �7��

B.2 FDC Buffer Passing	� GOTOBUTTON _Toc325521972 � PAGEREF _Toc325521972 �9��

B.3 Normal Data Transfer Termination	� GOTOBUTTON _Toc325521973 � PAGEREF _Toc325521973 �11��

B.4 Aborted Data Transfer Termination	� GOTOBUTTON _Toc325521974 � PAGEREF _Toc325521974 �12��

Aborting Stream Channel Pairs	� GOTOBUTTON _Toc325521975 � PAGEREF _Toc325521975 �13��

Example: Stream Channel Abort	� GOTOBUTTON _Toc325521976 � PAGEREF _Toc325521976 �13��

Example: Stream Channel Pair Normal Sequence (no abort)	� GOTOBUTTON _Toc325521977 � PAGEREF _Toc325521977 �14��

Example: Stream Channel Pair Aborted by the Data Destination	� GOTOBUTTON _Toc325521978 � PAGEREF _Toc325521978 �15��

Example: Stream Channel Pair Aborted by the Data Source	� GOTOBUTTON _Toc325521979 � PAGEREF _Toc325521979 �16��

B.5 VXIbus Servant Requirements	� GOTOBUTTON _Toc325521980 � PAGEREF _Toc325521980 �17��

B.6 VXIbus Commander Requirements	� GOTOBUTTON _Toc325521981 � PAGEREF _Toc325521981 �18��

B.7 VXIbus LINEAR and FIFO Buffer Requirements	19

C. Standard Word Serial Commands	� GOTOBUTTON _Toc325521983 � PAGEREF _Toc325521983 �21��

Channel Initialize:	� GOTOBUTTON _Toc325521984 � PAGEREF _Toc325521984 �21��

Channel Address Low: , Channel Address High:	� GOTOBUTTON _Toc325521985 � PAGEREF _Toc325521985 �23��

Channel Size Low: , Channel Size High:	� GOTOBUTTON _Toc325521986 � PAGEREF _Toc325521986 �24��

Go to Idle:	� GOTOBUTTON _Toc325521987 � PAGEREF _Toc325521987 �25��

Channel Close:	� GOTOBUTTON _Toc325521988 � PAGEREF _Toc325521988 �27��

Transfer to Servant:	� GOTOBUTTON _Toc325521989 � PAGEREF _Toc325521989 �28��

Transfer to Commander:	� GOTOBUTTON _Toc325521990 � PAGEREF _Toc325521990 �29��

FDC Event:	� GOTOBUTTON _Toc325521991 � PAGEREF _Toc325521991 �30��

FDC Supported:	� GOTOBUTTON _Toc325521992 � PAGEREF _Toc325521992 �31��

Enable Passed Buffer:	� GOTOBUTTON _Toc325521993 � PAGEREF _Toc325521993 �32��

Passed Buffer:	� GOTOBUTTON _Toc325521994 � PAGEREF _Toc325521994 �33��

D. Memory Management FDC Commands	� GOTOBUTTON _Toc325521995 � PAGEREF _Toc325521995 �35��

Memory Pool Select:	� GOTOBUTTON _Toc325521996 � PAGEREF _Toc325521996 �36��

Memory Pool Allocate:	� GOTOBUTTON _Toc325521997 � PAGEREF _Toc325521997 �37��

Use Address:	� GOTOBUTTON _Toc325521998 � PAGEREF _Toc325521998 �38��

Use Size:	� GOTOBUTTON _Toc325521999 � PAGEREF _Toc325521999 �39��

Use Access:	� GOTOBUTTON _Toc325522000 � PAGEREF _Toc325522000 �40��

E. Extended FDC Commands	� GOTOBUTTON _Toc325522001 � PAGEREF _Toc325522001 �41��

Extended Channel Initialize:	� GOTOBUTTON _Toc325522002 � PAGEREF _Toc325522002 �42��

Extended Channel Address:	� GOTOBUTTON _Toc325522003 � PAGEREF _Toc325522003 �43��

Extended Channel Size:	� GOTOBUTTON _Toc325522004 � PAGEREF _Toc325522004 �44��

Extended Go to Idle:	� GOTOBUTTON _Toc325522005 � PAGEREF _Toc325522005 �45��

Extended Channel Close:	� GOTOBUTTON _Toc325522006 � PAGEREF _Toc325522006 �46��

Extended Transfer to Servant:	� GOTOBUTTON _Toc325522007 � PAGEREF _Toc325522007 �47��

Extended Transfer to Commander:	� GOTOBUTTON _Toc325522008 � PAGEREF _Toc325522008 �48��

Extended FDC Event:	� GOTOBUTTON _Toc325522009 � PAGEREF _Toc325522009 �49��

Extended FDC Event Query:	� GOTOBUTTON _Toc325522010 � PAGEREF _Toc325522010 �50��

Extended Passed Buffer:	� GOTOBUTTON _Toc325522011 � PAGEREF _Toc325522011 �51��

F. Examples	� GOTOBUTTON _Toc325522012 � PAGEREF _Toc325522012 �53��

F.1 Channel Initialization Procedure	� GOTOBUTTON _Toc325522013 � PAGEREF _Toc325522013 �53��

F.2 Data transfer from Commander to Servant	� GOTOBUTTON _Toc325522014 � PAGEREF _Toc325522014 �54��

F.3 Data transfer from Servant to Commander	� GOTOBUTTON _Toc325522015 � PAGEREF _Toc325522015 �55��

F.4 Transfer Data using a Channel Pair	� GOTOBUTTON _Toc325522016 � PAGEREF _Toc325522016 �56��

F.5 Stream Data transfer from Commander to Servant	� GOTOBUTTON _Toc325522017 � PAGEREF _Toc325522017 �57��

F.6 Abort Flag Usage	� GOTOBUTTON _Toc325522018 � PAGEREF _Toc325522018 �58��

G. Message Transfer Protocol	� GOTOBUTTON _Toc325522019 � PAGEREF _Toc325522019 �59��

G.1 Introduction	� GOTOBUTTON _Toc325522020 � PAGEREF _Toc325522020 �59��

G.2 MTP Establishment and Termination	� GOTOBUTTON _Toc325522021 � PAGEREF _Toc325522021 �59��

G.3 MTP Communication	� GOTOBUTTON _Toc325522022 � PAGEREF _Toc325522022 �59��

G.4 MTP Error Conditions	� GOTOBUTTON _Toc325522023 � PAGEREF _Toc325522023 �60��

G.5 Automatic MTP Activation	� GOTOBUTTON _Toc325522024 � PAGEREF _Toc325522024 �60��

G.6 MTP General Requirements	� GOTOBUTTON _Toc325522025 � PAGEREF _Toc325522025 �60��

G.7 MTP Commanders	� GOTOBUTTON _Toc325522026 � PAGEREF _Toc325522026 �61��

G.8 MTP Servants	� GOTOBUTTON _Toc325522027 � PAGEREF _Toc325522027 �62��

H. MTP Commands	� GOTOBUTTON _Toc325522028 � PAGEREF _Toc325522028 �65��

MTP Supported:	� GOTOBUTTON _Toc325522029 � PAGEREF _Toc325522029 �65��

MTP Activate:	� GOTOBUTTON _Toc325522030 � PAGEREF _Toc325522030 �66��

MTP Terminate:	� GOTOBUTTON _Toc325522031 � PAGEREF _Toc325522031 �67��

�� TOC \o "1-4" �A. Introduction	� GOTOBUTTON _Toc322355119 � PAGEREF _Toc322355119 �Error! Bookmark not defined.1��

A.1 Description	� GOTOBUTTON _Toc322355120 � PAGEREF _Toc322355120 �1��

A.2 Vocabulary	� GOTOBUTTON _Toc322355121 � PAGEREF _Toc322355121 �3��

A.3 FDC Memory Allocation Map	� GOTOBUTTON _Toc322355122 � PAGEREF _Toc322355122 �5��

B. FDC Devices General Requirements	� GOTOBUTTON _Toc322355123 � PAGEREF _Toc322355123 �7��

B.2 FDC Buffer Passing	� GOTOBUTTON _Toc322355124 � PAGEREF _Toc322355124 �9��

B.3 Normal Data Transfer Termination	� GOTOBUTTON _Toc322355125 � PAGEREF _Toc322355125 �11��

B.4 Aborted Data Transfer Termination	� GOTOBUTTON _Toc322355126 � PAGEREF _Toc322355126 �12��

B.5 VXI Servant Requirements	� GOTOBUTTON _Toc322355127 � PAGEREF _Toc322355127 �17��

B.6 VXI Commander Requirements	� GOTOBUTTON _Toc322355128 � PAGEREF _Toc322355128 �18��

. B.7 VXI LINEAR and FIFO Buffer Requirements	� GOTOBUTTON _Toc322355129 � PAGEREF _Toc322355129 �19��

C. Standard Word Serial Commands	� GOTOBUTTON _Toc322355130 � PAGEREF _Toc322355130 �21��

Channel Initialize:	� GOTOBUTTON _Toc322355131 � PAGEREF _Toc322355131 �21��

Channel Address Low: , Channel Address High:	� GOTOBUTTON _Toc322355132 � PAGEREF _Toc322355132 �23��

Channel Size Low: , Channel Size High:	� GOTOBUTTON _Toc322355133 � PAGEREF _Toc322355133 �24��

Go to Idle:	� GOTOBUTTON _Toc322355134 � PAGEREF _Toc322355134 �25��

Channel Close:	� GOTOBUTTON _Toc322355135 � PAGEREF _Toc322355135 �27��

Transfer to Servant:	� GOTOBUTTON _Toc322355136 � PAGEREF _Toc322355136 �28��

Transfer to Commander:	� GOTOBUTTON _Toc322355137 � PAGEREF _Toc322355137 �29��

FDC Event:	� GOTOBUTTON _Toc322355138 � PAGEREF _Toc322355138 �30��

FDC Supported:	� GOTOBUTTON _Toc322355139 � PAGEREF _Toc322355139 �31��

Enable Passed Buffer:	� GOTOBUTTON _Toc322355140 � PAGEREF _Toc322355140 �32��

Passed Buffer:	� GOTOBUTTON _Toc322355141 � PAGEREF _Toc322355141 �33��

D. Memory Management FDC Commands	� GOTOBUTTON _Toc322355142 � PAGEREF _Toc322355142 �35��

Memory Pool Select:	� GOTOBUTTON _Toc322355143 � PAGEREF _Toc322355143 �36��

Memory Pool Allocate:	� GOTOBUTTON _Toc322355144 � PAGEREF _Toc322355144 �37��

Use Address:	� GOTOBUTTON _Toc322355145 � PAGEREF _Toc322355145 �38��

Use Size:	� GOTOBUTTON _Toc322355146 � PAGEREF _Toc322355146 �39��

Use Access:	� GOTOBUTTON _Toc322355147 � PAGEREF _Toc322355147 �40��

E. Extended FDC Commands	� GOTOBUTTON _Toc322355148 � PAGEREF _Toc322355148 �41��

Extended Channel Initialize:	� GOTOBUTTON _Toc322355149 � PAGEREF _Toc322355149 �42��

Extended Channel Address:	� GOTOBUTTON _Toc322355150 � PAGEREF _Toc322355150 �43��

Extended Channel Size:	� GOTOBUTTON _Toc322355151 � PAGEREF _Toc322355151 �44��

Extended Go to Idle:	� GOTOBUTTON _Toc322355152 � PAGEREF _Toc322355152 �45��

Extended Channel Close:	� GOTOBUTTON _Toc322355153 � PAGEREF _Toc322355153 �46��

Extended Transfer to Servant:	� GOTOBUTTON _Toc322355154 � PAGEREF _Toc322355154 �47��

Extended Transfer to Commander:	� GOTOBUTTON _Toc322355155 � PAGEREF _Toc322355155 �48��

Extended FDC Event:	� GOTOBUTTON _Toc322355156 � PAGEREF _Toc322355156 �49��

Extended FDC Event Query:	� GOTOBUTTON _Toc322355157 � PAGEREF _Toc322355157 �50��

Extended Passed Buffer:	� GOTOBUTTON _Toc322355158 � PAGEREF _Toc322355158 �51��

F. Examples	� GOTOBUTTON _Toc322355159 � PAGEREF _Toc322355159 �53��

F.1 Channel Initialization Procedure	� GOTOBUTTON _Toc322355160 � PAGEREF _Toc322355160 �53��

F.2 Data transfer from Commander to Servant	� GOTOBUTTON _Toc322355161 � PAGEREF _Toc322355161 �54��

F.3 Data transfer from Servant to Commander	� GOTOBUTTON _Toc322355162 � PAGEREF _Toc322355162 �55��

F.4 Transfer Data using a Channel Pair	� GOTOBUTTON _Toc322355163 � PAGEREF _Toc322355163 �56��

F.5 Stream Data transfer from Commander to Servan	� GOTOBUTTON _Toc322355164 � PAGEREF _Toc322355164 �57��

F.6 Abort Flag Usage	� GOTOBUTTON _Toc322355165 � PAGEREF _Toc322355165 �58��

G. Message Transfer Protocol	� GOTOBUTTON _Toc322355166 � PAGEREF _Toc322355166 �59��

G.1 Introduction	� GOTOBUTTON _Toc322355167 � PAGEREF _Toc322355167 �59��

G.2 MTP Establishment and Termination	� GOTOBUTTON _Toc322355168 � PAGEREF _Toc322355168 �59��

G.3 MTP Communication	� GOTOBUTTON _Toc322355169 � PAGEREF _Toc322355169 �59��

G.4 MTP Error Conditions	� GOTOBUTTON _Toc322355170 � PAGEREF _Toc322355170 �60��

G.5 Automatic MTP Activation	� GOTOBUTTON _Toc322355171 � PAGEREF _Toc322355171 �60��

G.6 MTP General Requirements	� GOTOBUTTON _Toc322355172 � PAGEREF _Toc322355172 �60��

G.7 MTP Commanders	� GOTOBUTTON _Toc322355173 � PAGEREF _Toc322355173 �61��

G.8 MTP Servants	� GOTOBUTTON _Toc322355174 � PAGEREF _Toc322355174 �62��

H. MTP Commands	� GOTOBUTTON _Toc322355175 � PAGEREF _Toc322355175 �65��

MTP Supported:	� GOTOBUTTON _Toc322355176 � PAGEREF _Toc322355176 �65��

MTP Activate:	� GOTOBUTTON _Toc322355177 � PAGEREF _Toc322355177 �66��

MTP Terminate:	� GOTOBUTTON _Toc322355178 � PAGEREF _Toc322355178 �67��

�

�A.�seq hd2 \r 1 \h��seq rule \r \h�� seq observation \r \h � Introduction

Fast Data Channel (FDC) protocol provides a mechanism for transferring data between a VXIbusVXI Commander and its Servants. The primary goals of FDC are:

Provide an efficient mechanism for transferring large blocks of data between VXIbusVXI Commanders and their Servants.

Utilize standard, existing (VME compatible) hardware structures.

Minimize the complexity of the protocol, making software driver development easy and driver execution fast.

The complexity of the software driver has been kept to a minimum to make implementation easy and execution efficient. Memory which is accessible by both devices, a Message Based interface and a software driver on the Commander and Servant are the only requirements for implementation of the protocol.

A.�seq hd2 \r 1�11� Description

The FDC protocol supports the transfer of data blocks between a VXIbusVXI Commander and its VXIbusVXI Servant. The data can be moved from the Commander to the Servant or from the Servant to the Commander. The media used to move the data is electronic memory which is accessible to both the commander and the servant. VXIbusVXI Word Serial commands are used to determine the size and location of the memory. Simple flags are used to handshake buffers of data between the commander and the servant, allowing the transfer of data blocks larger than the available Memory.

The FDC protocol requires that a software driver exist on both the commander and the servant. This driver establishes an FDC Channel and manages data transfers. The VXIbusVXI commander is responsible for FDC channel management and initiating any data transfers. The commander first sends the Channel Initialize command to the servant. This creates a valid FDC channel. It then sends the Channel Address and Channel Size Word Serial commands to determine the location and size of the FDC Area. At this point a valid FDC channel exists between the commander and the servant which is accessible by both.

Once an FDC channel has been created, it can be used to transfer data blocks. To transfer data from the commander to the servant, the commander sends a Transfer to Servant command to the servant. The servant responds by setting the appropriate flags in the Channel Header and returns a success response. Buffers of data are passed from the commander to the servant until the entire data block has been transferred.

To transfer data from the servant to the commander, the Transfer to Commander command is sent to the servant. The servant responds by setting the appropriate flags in the Channel Header and returns a success response. Buffers of data are passed from the servant to the commander.

Four flags are used to manage the transfer of data blocks. The Write Ready and Read Ready flags are used to pass buffers of data back and forth between the commander and servant.

Either the commander or the servant owns the FDC area at any point in time. The owner of the FDC area has both read and write privileges to the Channel Header and Channel Buffer. The non-owner has only read privileges for the FDC header only. Ownership is identified by the Write Ready and Read Ready flags.

The End flag informs the data receiver that this buffer of data is the last buffer in the transfer of the data block.

The fourth bit in the FDC Header is the Abort bit. If either the commander or servant chooses to prematurely terminate the transfer, it can set the abort bit when it receives ownership of the FDC Area.

The device setting the Abort bit is the abort generator. Once the abort generator sets the Abort bit, it passes the FDC area to the abort receiver. The abort receiver acknowledges the abort by clearing the Abort bit and terminating the transfer. When the abort generator detects this acknowledgment it also terminates the transfer. The data block being transferred is invalid if the transmission is terminated by the Abort bit. Reporting of the abort to the user application is an instrument specific function.

An FDC channel can be in one of two states: active or idle. When a channel is not engaged in data transfer, it is idle. This is its state immediately after creation. While a data transfer is in progress the channel is active. A channel may transition between the active and idle states many times during its lifetime.

Two classes of FDC commands are defined: Standard and Extended. Standard commands are 16 bit Word Serial Commands. Theyand are limited to controlling no more than 8 channels. Extended commands are 32 bit long Word Serial commands providing up to 216 channels.

Channels are formed only between commanders and their direct servants. Each of these channels are independent: They each have unique FDC areas.

Enhanced throughput may be achieved by utilizing a pair of FDC channels in tandem. Pairs are formed using adjacent even-odd channels i.e. 0-1, 2-3, 4-5, The lower numbered channel always transfers the first buffer of data in a block of data. The data source switches back and forth between the channels as it sends each buffer of data. The data receiver tracks this action, switching back and forth between the two channels as it reads each buffer of data. Using FDC channel pairs allows the sender to write a buffer of data to one channel while the receiver is reading a buffer of data from the other channel.

An FDC channel can be one of two types: Normal or Stream. A Normal channel transfers blocks of data and transitions between the idle and active states. Each transfer is initiated by Transfer to Commander or Transfer to Servant command. When the last buffer of data is transferred the channel will transition to the idle state.

A Stream channel is always in the active state. It is established in the same manner as a normal channel except the Stream flag is set in the Transfer to Servant/Commander command. A Transfer to Servant or Transfer to Commander command is sent only once, when the channel is formed, to establish the direction of the stream. Buffers of data are passed in the regular fashion. The End bit is used to separate data blocks but does not terminate the transfer. Stream channels are terminated by sending the Go to Idle command.

Three modes of access to the FDC buffer are supported to allow efficient implementation of instrument hardware: random, linear, and FIFO access. Random allows data access in any sequence any number of times. Linear requires a single sequential data access through the buffer. FIFO places the entire data buffer behind a single address and requires repeated access of that single location. Supported FDC data access modes are indicated by the response from the Channel Initialize command.

The format and type of data transferred via FDC channels is not defined by the FDC protocol. It is the responsibility of both the module manufacturer and the user to ensure the data transferred is usable by the VXIbusVXI commander or servant devices. Where appropriate, identification information may be included in the data block so that error checking can be made.

�A.�seq hd2�22� Vocabulary

FDC: Fast Data Channel - A VXIbus protocol which supports the transfer of data between Commanders and Servants.

FDC Area: A portion of memory which is accessible to both the VXIbusVXI commander and servant which is allocated to the FDC Channel. This memory contains the Channel Header and Channel Data Buffer.

Channel Header: The first 8 bytes of the FDC area. The header contains the FDC Version, data buffer management flags and the data size value.

Data Buffer: The portion of the FDC area directly following the channel header and extending to the end of the FDC area. The data buffer is used to temporarily store data being transferred.

FDC Channel: The memory and protocol which provides the data transport mechanism for FDC.

Data Block: A well defined array of data in an application specific format.

Buffer of Data: A buffer of data is a logical construct which contains two elements. The first element is all or a portion of the data in a data block to be transferred using FDC protocol. The second element is a 32 bit unsigned integer which reflects the number of bytes or the number of FIFO accesses contained in this particular portion of the data block.

Idle Channel: An FDC channel which has been initialized but is not currently engaged in transferring data.

Active Channel: An FDC channel which is currently engaged in transferring data.

Abort Generator: An FDC device which, during this transfer, has set the Abort bit.

Abort Receiver: An FDC device which, during this transfer, will acknowledge the Abort bit which was set by the other FDC device.

FDC Driver: A software or firmware algorithm which implements the FDC protocol.

Normal Transfer: An FDC transfer mode which can be used to transfer discrete data blocks. A normal channel transitions between the active and idle state for each data block transfer.

Stream Transfer: An FDC transfer mode which is always active and is able to pass a continuous flow of data.

FDC Command: An FDC command which uses the 16 bit Word Serial commands for channel management.

Extended FDC Command: An FDC command which uses the 32 bit Word Serial commands for channel management.

BC Command: A standard FDC command which has bit 15 set to 0. BC commands are provided for backwards compatibility to prior versions of the FDC standard.

Data Source: The VXIbusVXI device which is providing the data being transferred. During a transfer to servant, the commander is the data source. During a transfer to commander, the servant is the data source.

Data destination: The VXIbusVXI device which is accepting the data being transferred. During a transfer to servant, the servant is the data destination. During a transfer to commander, the commander is the data destination.

Local Memory: Memory which is directly owned by the FDC servant. This can be either memory which physically resides either on the servant or an VXIbusVXI memory device which is a direct servant of the FDC servant. To utilize memory which does not physically reside on the FDC servant, the servant must be a bus master.

Remote Memory: Memory which is not directly owned by the FDC servant. A remote memory pool must be allocated to the servant by the FDC commander. The FDC commander and servant then negotiate an FDC area within this memory pool to create an FDC channel.

�A.�seq hd2�33� FDC Memory Allocation Map

The FDC area contains the FDC Channel Header information and the FDC Data Buffer.

BIT�7 - 4�3�2�1�0���������FDC Channel Header�������BYTE 0�Minor

Revision�Major

Revision��BYTE 1�RSVD�RSVD�RSVD�RSVD�RSVD��BYTE 2�RSVD�RSVD�RSVD�RSVD�TRIG��BYTE 3�RSVD�ABT�RDY�WDY�END��BYTE 4�DATA SIZE BITS 31-24��BYTE 5�DATA SIZE BITS 23-16��BYTE 6�DATA SIZE BITS 15-8��BYTE 7�DATA SIZE BITS 7-0�����FDC Channel Buffer���BYTE 8�DATA BUFFER BYTE 0 (FIFO BITS 31-24)��BYTE 9�DATA BUFFER BYTE 1 (FIFO BITS 23-16)��BYTE 10�DATA BUFFER BYTE 2 (FIFO BITS 15-8)��BYTE 11�DATA BUFFER BYTE 3 (FIFO BITS 7-0)�� .

 .

 .

BYTE N�

DATA BUFFER BYTE N-8��

Notes

RSVD : These bits are reserved and should be set to 0.

MAJOR REVISION: Must be 2 (3 bit code)

MINOR REVISION: Must be 1 (2 bit code)

TRIG: The TRIG bit is utilized only within Message Transfer Protocol (MTP) to send the MTP Trigger command. It has no meaning outside of MTP and should be set to 0.

END: The End bit indicates whether this buffer of data is the last buffer of data in a data block. If the End bit is set to 1, this is the last buffer of data. If the End bit is set to 0 , this is not the last buffer of data.

WDY: The Write Ready flag is utilized when data is transferred from the commander to the servant. If the Write Ready bit is set to 1, the commander owns the FDC area. It can place a buffer of data into the FDC area and then set Write Ready to 0 to pass the buffer of data to the servant. If the Write Ready bit is set to 0, the VXIbusVXI servant owns the FDC area. It may read the buffer of data and then set Write Ready high to pass the FDC area back to the commander. When the channel is in the idle state, Write Ready is 0.

RDY: The Read Ready flag is utilized when data is transferred from the servant to the commander. If the Read Ready bit is set to 0, the VXIbusVXI Servant owns the FDC area. It can place a buffer of data into the FDC area and sets the Read Ready bit to 1 to pass the buffer of data to the commander. If the Read Ready bit is set to 1, the commander owns the FDC area. The commander can read the buffer of data and then set the Read Ready bit to 0 to pass the FDC area back to the servant. When the channel is in the idle state, Read Ready is 0.

ABT: The Abort bit indicates that an abort transfer is being requested for this block of data. The current owner of the FDC area (abort generator) may set the Abort bit to a 1 to request that a data block transfer be aborted. The abort generator then passes ownership of the FDC area to the abort receiver.

In a Normal channel the abort receiver sets the Abort bit to 0 (zero) and returns the channel to the Idle state. It discards any data which was received during the aborted transfer. The abort generator returns the channel to the idle state when the Abort bit is returned to 0 by the abort receiver.

In a Stream channel the abort receiver sets the Abort bit to 0 but does not change the state of the channel; the channel remains in the Active state. It discards any data which was received during the aborted block transfer.

DATA SIZE: The FDC DATA SIZE contains the number of bytes contained in this buffer of data.

DATA BUFFER: Memory area where the data to be transferred is placed. There are 3 modes of access supported for the data buffer: Random, Linear, and FIFO. Random access allows the buffer to be accessed in any order any number of times. Linear requires the buffer to be accessed from start to end incrementing to the next address on each access. Each location may be accessed only once. FIFO mode requires that the FDC Buffer is read repeatedly at the defined offset until the specified number of bytes have been read.

�B.�seq hd2 \r 1 \h \h��seq rule \r \h�� seq observation \r \h � FDC Devices General Requirements

FDC devices manage the FDC protocol with VXIbusVXI Word Serial commands. These commands are 16 or 32 bit values which are interpreted by the VXIbusVXI servant and executed. Some of the commands provide a response word which indicates execution status and returns information about the state of the FDC channel. VXIbusVXI Word Serial commands are only supported only by VXIbusVXI message based devices.

RULE B.�seq hd2 \c�11�.�seq rule�11� :

An FDC device SHALL be a message based device.

To keep the FDC protocol simple and efficient, the allowed communications is limited to VXIbusVXI commanders and their direct servants. A FDC channel may not be shared by more than two devices.

RULE B.�seq hd2 \c�11�.�seq rule�22� :

An FDC channel SHALL NOT be shared by more than two VXIbusVXI devices.

RULE B.�seq hd2 \c�11�.�seq rule�33� :

An FDC channel SHALL NOT be established other than between a VXIbusVXI servant and its VXIbusVXI commander.

RULE B.�seq hd2 \c�11�.�seq rule�44� :

When FDC channels are used in pairs then the pairs SHALL be formed between adjacent channels using the algorithm 2*N and (2*N) + 1 where N = 0, 1, 2, ... e.g.: 0 and 1, 2 and 3, 4 and 5 or any valid even odd pair.

RULE B.�seq hd2 \c�11�.�seq rule�55� :

When FDC channels are used in pairs, then the first buffer of data SHALL be sent on the lower numbered pair. The second buffer of data SHALL be sent on the higher numbered pair. Data buffer transmission SHALL continue to switch back and forth between the pair until the entire block of data is transferred or the transfer is terminated by an abort.

RULE B.�seq hd2 \c�11�.�seq rule�66� :

The FDC area base address SHALL be aligned on a double long word (8 bytes) boundary.

RULE B.�seq hd2 \c�11�.�seq rule�77� :

An FDC device SHALL NOT write to the FDC area unless it has ownership of the FDC area.

OBSERVATION B.�seq hd2 \c�11�.�seq observation�11� :

If the Write Ready and Read Ready bits are both 0 then the servant owns the FDC area. If either of the Write Ready or Read Ready bits is 1 then the commander owns the FDC area

RULE B.�seq hd2 \c�11�.�seq rule�88� :

An FDC device SHALL NOT read the FDC DATA area unless it has ownership of the FDC area. It mayMAY read the HEADER area at any time

RULE B.�seq hd2 \c�11�.�seq rule�99� :

An FDC device SHALL only read or write the FDC HEADER area only using VMEbus D16 accesses.

RULE B.�seq hd2 \c�11�.�seq rule�1010� :

When a device receives ownership of the FDC area during an FDC transfer, it SHALL first check the Abort flag. If the Abort flag is set, the device SHALL clear the Abort flag and if it is a normal channel, return the channel to the idle state.

OBSERVATION B.�seq hd2 \c�11�.�seq observation�22� :

Because the FDC data buffer is required to be aligned on a double long word (8 byte) boundary and each buffer of data (except the last one) must have an even double long word length, the software algorithms which move data into or out of the data buffer can be optimized for efficiency and speed.

�� seq rule \r \h �� seq observation \r \h �B.� seq hd2 �22� FDC Buffer Passing

During an FDC transfer, the commander and servant must pass ownership of FDC buffers back and forth. To determine that a buffer has been passed, the commander or servant may either poll the FDC header or utilize the buffer passing notification mechanisms provided by FDC.

The FDC Passed Buffer command provides notification to the servant that the commander has passed it an FDC buffer to the servant. The channel number of the passed buffer is included in the Passed Buffer command. To utilize this mechanism the servant must indicate support for the Passed Buffer command in its response to the Channel Initialize command. For channels established with standard 16 bit FDC commands, the commander must enable the servant to accept the Passed Buffer command by sending the Enable Passed Buffer command. Channels established with Extended FDC commands are enabled by default. Once enabled, the servant is no longer required to poll the FDC channel header when waiting to receive a buffer. The commander will send the Passed Buffer command to the servant after a buffer is passed on any channel.

RULE B.�seq hd2 \c�22�.�seq rule�11� :

An FDC commander SHALL NOT send the FDC Passed Buffer command to an FDC servant unless the servant indicates support for the Passed Buffer command in its response to the FDC Channel Initialize command and is enabled to receive the Passed Buffer command.

RULE B.�seq hd2 \c�22�.�seq rule�22� :

If an FDC commander has enabled the FDC Passed Buffer command for its FDC servant, it SHALL send the FDC Passed Buffer command to that FDC servant each time it passes a buffer to the servant. The Passed Buffer command SHALL be sent after the buffer is passed.

OBSERVATION B.�seq hd2 \c�22�.�seq observation�11� :

Extended channels which indicate support for the FDC Passed Buffer command are enabled by default. The Passed Buffer command must always be sent to an extended FDC servant which indicates support for the Passed Buffer command.

OBSERVATION B.�seq hd2 \c�22�.�seq observation�22� :

The enabling of the FDC Passed Buffer command applies to all channels supported by the FDC servant. The Passed Buffer command can not be enabled or disabled for individual channels.

FDC events provide notification to the commander that its servant has passed it an FDC buffer. The servant must be enabled to send FDC events for each channel which the commander expects to receive events. The FDC Event command is used to enable or disable event generation. Once enabled, the commander need not poll the FDC channel header to determine when it is passed a buffer for that channel. Once the event is enabled, the servant will send the FDC event each time it passes a buffer on that channel.

When the commander receives an FDC event it must determine which channel the event is for. FDC events for standard 16 bit FDC channels contain the channel number in the event. Extended channel events do not contain the channel number. For extended channels, the commander must send the FDC Event Query command to the servant. The servant maintains a queue of extended events and returns the next entry in this queue. The FDC Event Query response indicates which channel sent the event. The commander should continue to send the FDC Event Query command until the servant's extended event queue is emptied. When the queue is empty, the servant will respond with no events in the Extended FDC Event Queue.

RULE B.�seq hd2 \c�22�.�seq rule�33� :

If an FDC servant has been enabled to send the FDC event on a particular channel, it SHALL send the FDC event to that FDC commander each time it passes a buffer to the commander. The FDC Event SHALL be sent after the buffer is passed.

RULE B.�seq hd2 \c�22�.�seq rule�44� :

If an extended FDC servant has been enabled to send the FDC event on a particular channel, it SHALL maintain a queue of events which can contain one event for each channel supported. Each time this event queue becomes not empty, the servant SHALL send an extended FDC event.

RULE B.�seq hd2 \c�22�.�seq rule�55� :

If an FDC commander has enabled events on an extended FDC servant and receives an extended FDC event, it SHALL send the FDC Event Query command to the FDC servant to retrieve the channel number of the FDC event. The commander SHALL repeat this operation until all events have been retrieved from the servant.

PERMISSION B.�seq hd2 \c�22�.�seq permission�11� :

An FDC commander which retrieves extended FDC events using the FDC Event Query command MAY process each event as it is retrieved or retrieve all events and then process them.

�� seq rule \r \h �� seq observation \r \h �B.� seq hd2 �33� Normal Data Transfer Termination

Normal channel transfer termination is achievedarchived by setting the End flag in the channel header. When the End flag is set, it indicates that this is the last buffer of data to transfer.

Setting the End flag in a Stream channel defines the end of a data block but does not terminate the data transfer. Stream channels are always active. To terminate a stream, the Go to Idle command must be sent.

RULE B.�seq hd2 \c�33�.�seq rule�11� :

The data source SHALL set the End flag in the channel header of the last buffer of data, even if the transfer involves only one buffer of data. The transfer is not complete until the data destination clears the End bit to 0.

RULE B.�seq hd2 \c�33�.�seq rule�22� :

The data destination SHALL clear the End bit on the successful receipt of the last buffer of data.

RULE B.�seq hd2 \c�33�.�seq rule�33� :

When a Normal channel data destination successfully receives a buffer of data with the End flag set, it SHALL clear the End bit and then return its channels to the idle state.

RULE B.�seq hd2 \c�33�.�seq rule�44� :

When an FDC transfer terminates and the channel is returned to the idle state, if the commander owns the FDC area, it SHALL return the FDC area to the servant by clearing all of the channel header flags.

�

B.� seq hd2 �44� A�seq rule \r \h��seq observation \r \h�borted Data Transfer Termination

An Normal FDC transfers may be aborted by setting the Abort flag in the channel header. Aborting a transfer invalidates the data already transferred.

The abort flag may only be set only by the owner of the FDC area. The abort generator must pass the FDC area to the other FDC device, the abort receiver, to request that the transfer be aborted. The abort receiver clears the Abort flag and terminates the transfer. When the abort generator detects the negation of the Abort flag it terminates the transfer. The channels are then idled and the FDC areas are be returned to the servant. Aborting a transfer invalidates the data already transferred.

ForIn Normal FDC channels and Normal FDC channel pairs, the abort generate/acknowledge cycle occurs on one of the two channels. Once the abort is acknowledged, both channels are idled and ownership of the buffers is returned to the servant.Abort flag operates in the same manner as the End flag except for the additional meaning of invalidating the transfer. The channels are idled normally and the FDC areas must be returned to the servant. In stream FDC channels, the Abort flag operates in the same manner as the End flag but the channel is not idled.

RULE B.�seq hd2 \c�44�.�seq rule�11� :

The data destination device SHALL NOT clear the End bit to 0 on the successful receipt of the last buffer of data if the receipt of the last buffer of data is not successful. It SHALL instead set the Abort flag and pass the FDC area back to the data source to indicate a transfer abort.

RULE B.�seq hd2 \c�44�.�seq rule�22� :

When a Normal channel pair data destination device receives a buffer of data with the Abort flag set, it SHALL acknowledge the abort by clearing the Abort flag and passreturning the buffer to the data source device. It then returns both channels of the pair to the idle state.

RULE B.�seq hd2 \c�44�.�seq rule�33� :

When a Normal transfer which uses a channel pair is aborted, both the data sender and the data receiverit SHALL return both channels of the pair to the idle state after the abort has been sent and acknowledged.

OBSERVATION B.�seq hd2 \c�44�.�seq observation�11� :

During a Normal FDC transfer, ownership of the flags and data buffers is passed back and forth between the sender and the receiver. The Abort flag can only be set only by the current owner of the FDC area. Once the Abort flag has been set, ownership must be passed to the other side for acknowledgment.

�Aborting Stream Channel Pairs

In a normal stream pair the channels, buffers are loaded and passed in a specific order. First the even buffer is loaded and passed, followed by the odd buffer. Both the data source and data destination must follow this sequence regardless of the End or Abort flags. In Stream FDC channel pairs, a particular set of actions are specified for the commander and servant to ensure correct sequencing of the channel pair is maintained.

When the data destination device rejects a buffer in a stream pair transfer, the following buffer may already have been sent by the data source. In general, it can not be known if the following buffer has been sent. To ensure deterministic operation, the data destination is required to always disregard the buffer following the buffer it aborted. If the data source acknowledges an aborted buffer and it has not yet sent the following buffer, it must send the following buffer. Because this buffer may have no useful purpose except to maintain synchronization, the data source may elect to send an empty buffer. The data destination is not allowed to access or modify the data contents of this buffer.

When the data destination aborts the last buffer in a data block, the following buffer is the first buffer of the next data block. Because this following buffer is returned unmodified, it can be reused if proper synchronization is maintained. When the data destination aborts the last buffer in a data block, it sets the Abort bit leaving the End bit set and returns the buffer. The data source acknowledges the aborted buffer and ensures the following buffer has been sent. The data destination returns this following buffer unmodified. This returned following buffer is the first buffer of the next data block. It cannot be sent because it is not the next channel in the even/odd sequence. To maintain synchronization, an empty buffer can be sent on the other even/odd channel to maintain the sequence. The returned following buffer can then be resent in proper sequence.

Example: Stream Channel Abort

� EMBED MSDraw ����Figure B.4a

In figure B.4athe diagram above, whenif the data destination device has received buffer E5 (even 5) and decides to abort the transfer of data block 2., Iit sets the Abort flag in the channel header of buffer E5 and returns it to the data source. It must also disregardcard the next buffer received after E5 to maintain correct synchronization, in this case O6 (odd 6).

If the data source has already passed buffer O6 when it detects the abort, it need not take any further actions. However, if the data source has not sent O6, it must send the O6a buffer to the data destination to ensure synchronization. The buffer may be empty, partially full or a complete buffer of data. The data destination device mustwill passreturn the O6 buffer of data back to the data source unmodified to the data source.

RULE B.�seq hd2 \c�44�.�seq rule�44� :

When a Stream FDC channel pair data destination device aborts the transfer it SHALL

set the Abort flag in the channel header

return the FDC area to the data source

return the next FDC bufferarea received without accessing the data

RULE B.�seq hd2 \c�44�.�seq rule�55� :

When a Stream FDC channel pair data source receives an FDC area with the Abort flag set and the End flag cleared and it has not yet sent the next FDC buffer in the current sequence, it SHALL send the next FDC buffer in the current sequence. The data in this buffer will not be accessedmodified by the data destination.

In a normal stream pair the channels buffers are loaded and passed in a specific order. First the even buffer is loaded and passed, followed by the odd buffer. Both the data source and data destination must follow this sequence regardless of the End or Abort flags. The drawing below shows a typical sequence.

Example: Stream Channel Pair Normal Sequence (no abort)

During an FDC transfer which utilizes the stream pair mode, buffers of data are passed from the data source to the data destination, alternating between the even channel (E) and odd channel (O). The End flag does not terminate the transfer but indicates the end of a block of data (dashed line).

� EMBED MSDraw ����

	Normal Stream Pair

When the data destination device rejects a buffer in a stream pair transfer the following buffer, in this case E5, may have been sent. In general, it can not be known if the following buffer has been sent. To ensure deterministic operation, the data destination is required to always discard the buffer following the buffer it aborted. If the data source acknowledges an aborted buffer and it has not yet sent the following buffer, it must either send the following buffer or an empty buffer.

If the data destination aborts the last buffer in a block, it sets the Abort bit leaving the End bit set and returns the buffer. If the data source has already sent the first buffer of the next block prior to receipt of the abort the data destination will return this buffer unmodified. This buffer can be re-used by sending an empty buffer of data on the channel which was aborted and then re-sending the first buffer. This avoids reloading the data into the FDC data area for a data block following an aborted block. This may be a common occurrence if small blocks are being transferred.�

Example: Stream Channel Pair Aborted by the Data Destination

When a data destination device determines that it must abort the data transfer, it must wait for ownership of one of the FDC buffers. In this example, the data destination sets the Abort flag on O4 and returns the buffer to the data source. To maintain synchronization, the data destination is required to return the buffer following the aborted buffer without accessing its data contents, in this case E5. Buffer E5 is returned to the data source, completing the abort cycle. A new data block transfer is then started beginning with data buffer 8 which will be transferred on the odd channel (refer to Figure B.4a).

� EMBED MSDraw ����

	Data Destination Abort without End Flag

�Example: Stream Channel Pair Aborted by the Data Source

When the data source aborts a block transfer, it the status of both the even and odd channels are known. The data source is required to follow the even/odd sequence of sending buffers. By definition, when the data source sets the Abort flag on a buffer, the following buffer has not yet been sent Because there is no ambiguity, there is no need toshould not send the buffer following the aborted buffer to ensure synchronization. In this case, a normal abort acknowledge cycle is executed on the aborted buffer. A new data block transfer begins on the following buffer.

 Because no invalid buffers are sent, no special action is required and synchronization is maintained. If the aborted buffer isthis is the last buffer in the data block, the End flag may or may not be sent with the Abort flag. Because the Abort flag takes precedence over the End flag, the End flag has no significanceaffect.

In this example, the data source determines that buffer O4 should be aborted. It sets the Abort flag on O4 and passes the buffer to the data destination. The data destination acknowledges the Abort flag and returns the buffer O4 to the data source. The data source then begins transferring the next data block using the next channel using the even/odd sequence on E8 (refer to figure B.4a). In this example the End flag is not sent.

� EMBED MSDraw ����

	Data Source Abort with no END flag

�

B.� seq hd2 �55� VXIbusVXI Servant Requirements

RULE B.�seq hd2 \c�55�.�seq rule�61� :

A VXIbusVXI servant which implements the FDC protocol SHALL implement all Standard FDC Word Serial Protocol Commands.

OBSERVATION B.�seq hd2 \c�55�.�seq observation�21� :

A VXIbusVXI servant must implement all commands. However, this does not require that the servant be capable of both sending andor receiving data. The Transfer To Servant or Transfer To Commander command may return a not supported response.

PERMISSION B.�seq hd2 \c�55�.�seq permission�21� :

A VXIbusVXI FDC servant device MAY support only the capability to send data or to receive data on a particular channel. The servant is not required to do both.

RULE B.�seq hd2 \c�55�.�seq rule�72�

A VXIbusVXI servant which implements the FDC protocol and indicates support for remote memory in the FDC Supported command response SHALL implement all FDC Memory Management commands.

RULE B.�seq hd2 \c�55�.�seq rule�83� :

A VXIbusVXI servant which implements the FDC Extended commands SHALL implement all defined extended commands.

�B.�seq hd2�66��seq rule \r \h� VXIbusVXI Commander Requirements

In addition to the standard FDC commands, a set of Backwards Compatibility (BC) commands is defined. These commands are used by a FDC commander to support servants implementing an earlier version of the FDC protocol. The BC commands are only implemented only within some devices which have Manufacturer ID codes of 4092 or 4093. BC commands haveutilize the same command codes as the corresponding standard commands except for the value of bit 15. Bit position 15 is a 1 for the standard commands and a 0 for the BC commands.

Similarly, the FDC event has a standard code and a BC code. The standard FDC event has bit 14 set to 1 and the BC event has bit 14 set to 0.

RULE B.�seq hd2 \c�66�.�seq rule�11� :

Commanders which provide user-accesible FDC services SHALL support both the standard and BC command codes and events.

A VXIbusVXI commander may discover support for the FDC protocol by its direct servants by sending the FDC Supported Word Serial command. If the device supports FDC it will provide an appropriate response. If FDC is not supported an unsupported command error will be generated by the Word Serial Protocol.

RULE B.�seq hd2 \c�66�.�seq rule�22� :

A VXIbusVXI commander is required to support both the standard command set and the BC command set. To determine which command set to utilize, the commander SHALL first send the standard FDC Supported Word Serial command. If the standard command fails and the VXIbusVXI Manufacturer ID is 4092 or 4093, then the BC FDC Supported Word Serial command SHALL be tested. The success of one of these commands SHALL set the command type for all following commands.

RULE B.�seq hd2 \c�66�.�seq rule�33� :

A VXIbusVXI commander which implements the FDC protocol SHALL implement all FDC Memory Management commands.

RULE B.�seq hd2 \c�66�.�seq rule�44� :

A VXIbusVXI commander which implements the FDC protocol SHALL NOT send any FDC Memory Management commands to the servant if the servant does not indicate support for remote memory in its response from the FDC supported command.

RULE B.�seq hd2 \c�66�.�seq rule�55� :

A VXIbusVXI commander which implements the FDC protocol SHALL NOT send any FDC Extended commands to the servant if the servant does not indicate support for Extended commands in its response from the FDC supported command.

�

B.�seq hd2�7��seq rule \r \h�� seq permission \r \h �� seq observation \r \h � VXIbus LINEAR and FIFO Buffer Requirements

B.�seq hd2�87��seq rule \r \h�� seq permission \r \h �� seq observation \r \h � VXI LINEAR and FIFO Buffer Requirements

T

The Linear and FIFO modes are provided in the FDC protocol to allow hardware implementations of the FDC data buffer which are state machine controlled. This type of interface can provide throughput improvement over software managed data transfer.

To ensure the interoperability of these interfaces the access method and sequencing are restricted to a greater degree than for Random access mode. The smallest unit of information in these modes is a single data register in the FIFO.

RULE B.�seq hd2 \c�87�.�seq rule�11� :

In FIFO or Linear access modes, the data register size SHALL be the largest data width indicated in the Channel Initialize DATA field in the response word.

PERMISSION B.�seq hd2 \c�87�.�seq permission�11� :

A FIFO or Linear data buffer MAY allow other data widths of smaller size than the data register size as indicated in the Channel Initialize DATA field. These are identified as fractional register data elements.

RULE B.�seq hd2 \c�87�.�seq rule�22� :

In FIFO or Linear access modes, fractional register data elements SHALL be of equal size and SHALL be accessed by the FDC commander in ascending order starting at the lowest address. The sum of the partial register data elements SHALL be equal to the total register width (example: 2 bytes = 1 word).

RULE B.�seq hd2 \c�87�.�seq rule�33� :

In FIFO or Linear access modes, the data size indicated in the header SHALL be in bytes. The number of commander accesses to the data buffer shall not exceed the number of bytes divided by the register width in bytes.

RULE B.�seq hd2 \c�87�.�seq rule�44� :

In FIFO or Linear access modes, unless the End bit is set in the FDC header, the data size for a buffer of data SHALL be an even multiple of the register size.

The buffer of data with the End bit set indicates the actual remaining byte count to be transferred in the block allowing any arbitrary number of bytes to be transferred. If the byte count is not an even multiple of the register size, the remainder indicates the number of partial register bytes which are valid within the last FIFO location transferred in this block. These are packed into the lowest address locations within the register in ascending order.

�C.�seq hd2 \r 1 \h� Standard Word Serial Commands

Channel Initialize:Channel Initialize:

T

This command is used to validate and initialize the FDC area.

The syntax of the Channel Initialize command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�0�1�0�Channel #����

Channel # : number 0 - 7 selecting a particular channel

*BC = 0

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�ADDR���DATA����PC�MODE����

Status: This field indicates status of the Channel Initialize command.

F16 - The Buffer Initialize command executed with no errors.

716 - ERROR - Channel already open.

616 - ERROR - No valid FDC area can be allocated.

516 - ERROR - This FDC channel number not supported.

ADDR : Supported address space

1 - A16 space

2 - A24 space

4 - A32 space

DATA : Allowed Data Buffer Access Sizes

1 - D08

2 - D16

4 - D32

8 - D64

PC : Pass Command Supported

0 - Supported - Commander must send Pass Command

1 - Not Supported - Commander must not send Pass Command

�MODE : Data Buffer mode

1 - Random access

2 - Linear access

4 - FIFO access

The following restrictions apply to the above flags:

The ADDR and MODE fields may contain only one of the listed values.

The DATA field value may be any bit-wise combination of the listed values. The DATA field value applies to the FDC Data Area only.

The FDC header is restricted to D16 accesses.

The servant receiving the Channel Initialize command must initialize the FDC header area for the selected channel before returning a success response. The header RSVD, flag bits, and data size should be set to zero. The version number should be set appropriately. It should place the channel in the idle state.

The standard Channel Initialize command can only initialize channels 0 through 7. The Extended Channel Initialize command must be used to create channels 8 through 65,535.

�Channel Address Low: , Channel Address High:

These commands are used to retrieve the FDC area base address from the servant. The FDC address and size defines a memory area within the address space returned by the Channel Initialize command.

The syntax of the Channel Address Low command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�0�0�0�0�0�Channel #����

The syntax of the Channel Address High command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�0�0�0�Channel #����

Channel # : number 0 - 7 selecting a particular channel

*BC = 0

A single response data word is placed in the Data Low register for each command in the following format:

Response Word

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��FDC Area Address Low or High Word�����������������

If no valid FDC area can be allocated, the value returned in the low and high response words should be $HFFFF.

�Channel Size Low: , Channel Size High:

These commands are used to retrieve the FDC area size. The FDC size identifies the memory area allocated to this FDC channel starting at the Address returned by the Channel Address Low and Hi commands.

The syntax of Channel Size Low command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�0�0�0�0�1�Channel #����

The syntax of Channel Size High command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�0�0�1�Channel #����

Channel # : number 0 - 7 selecting a particular channel

*BC = 0

A single response word is placed in the Data Low register for each command in the following format:

Response Word

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��FDC Area Size Low or High Word�����������������

If no valid FDC area can be allocated, the value returned in the first and second response words should be 000016.

The channel size defines the total memory allocated to the FDC protocol for this channel. It is the sum of the FDC Channel Header and Channel Data Buffer.

�Go to Idle:

This command is used to terminate a Stream transfer. It may also be used to force termination of a Normal transfer.

The syntax of the Go to Idle command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�1�1�IM�Channel #����

Channel # : number 0 - 7 selecting a particular channel

IM : Immediate Flag

0 - Transition to idle state at the end of the current block transfer

1 - Transition to idle immediately and re-initialize the buffer header

*BC = 0

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Go to Idle command.

F16 - The channel has returned to the idle state.

716 - PENDING - The channel is still active and will be returned to idle at the end of the current block of data.

616 - ERROR - Can't idle a closed channel.

516 - ERROR - This FDC channel number not supported.

416 - ERROR - Command not allowed.

The Go to Idle command is used to terminate a stream transfer. If the immediate flag is zero, the current data block transfer should be completed before terminating the stream and returning the channel to the idle state.

For a channel established as transfer to servant, the current block transfer is complete when the servant has successfully accepted a buffer of data with the end bit set and no longer has ownership of the FDC area. For a channel established as transfer to commander, the current block transfer is complete when the servant has successfully transferred a buffer of data with the end bit set to the commander and the servant has ownership of the FDC area.

If the PENDING response is returned, the servant will transition to the idle state at the completion of the current block transfer. To determine that the transfer is complete, the commander may send the Go to Idle command as many times as necessary, evaluating the response.

If the Immediate flag is set to one, the servant must clear all of the header flags to zero and return the channel to the idle state before returning its response. Once Go to Idle Immediate is sent, the controller must not access the channelís FDC area until it requests another transfer.

Sending Go to Idle to a normal and active channel has no effect and returns the PENDING response. However, sending Go to Idle Immediate will cause the normal channel to terminate in the same manner as a stream channel. This may be done to abort a transfer in progress and will result in loss of data. Sending the Go to Idle command to a channel pair causes both channels to transition to the idle state.

�Channel Close:

This command is used to close the FDC channel.

The syntax of the Channel Close command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�0�1�1�Channel #����

Channel # : number 0 - 7 selecting a particular channel

*BC = 0

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Channel Close command.

F16 - The Channel Close command executed with no errors.

716 - ERROR - Attempt to close a channel that is not open.

616 - ERROR - Attempt to close a channel that is active.

�Transfer to Servant:

This command is used to initiate a data block transfer from the commander to the servant.

The syntax of the Transfer to Servant command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�1�0�PR�ST�Channel #����

Channel # : number 0 - 7 selecting a particular channel

ST : Stream Flag

0 - Transfer is a Normal data block transfer

1 - Transfer is a Stream transfer

PR : Channel Pair Flag

0 - Channel is not to be used as a pair

1 - Channel is to be used as a pair.

*BC = 0

Note: The PR bit may be set only for channels 0,2,4, and 6. If this bit is set, the corresponding channel pair is made active.

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Transfer to Commander command.

F16 - No errors detected. Data transfer will commence.

716 - ERROR - Request to send data with no valid FDC channel.

616 - ERROR - Request to send data when FDC channel is already active.

516 - ERROR - PR bit not legal for this channel.

416 - ERROR - Unable to utilize channel pair.

316 - ERROR - Unable to receive data for instrument specific reasons.

216 - ERROR - Unsupported mode (stream, normal or direction)

The Transfer to Servant command should clear the Abort, Read Ready, and End bits to zero, and Write Ready to one before returning the response. It should transition the channel state to active.

�Transfer to Commander:

This command is used to initiate a data block transfer from the servant to the commander.

The syntax of the Transfer to Commander command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�1�1�PR�ST�Channel #����

Channel # : number 0 - 7 selecting a particular channel

ST : Stream Flag

0 - Transfer is a normal data block transfer

1 - Transfer is a Stream transfer

PR : Channel Pair Flag

0 - Channel is not to be used as a pair

1 - Channel is to be used as a pair.

*BC = 0

Note: The PR bit may be set only for channels 0,2,4, and 6. If this bit is set, the corresponding channel pair is made active.

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Transfer to Commander command.

F16 - No errors detected. Data transfer will commence.

716 - ERROR - Request to send data with no valid FDC channel.

616 - ERROR - Request to send data when FDC channel is already active.

516 - ERROR - PR bit not legal for this channel.

416 - ERROR - Unable to utilize channel pair.

316 - ERROR - Unable to send data for instrument specific reasons.

216 - ERROR - Unsupported mode (stream, normal or direction)

The Transfer to Commander command should clear the Abort, Read Ready, Write Ready, and End bits to zero before returning the response. It should transition the channel state to active.

�FDC Event:

This command is used to control FDC event generation.

The syntax of the FDC Event command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�1�0�1�0�EV�Channel #����

Channel # : number 0 - 7 selecting a particular channel

EV: Event Enable Bit

0 - No events are generated by FDC protocol

1 - The Servant will send an event when it passes the FDC area to the Commander.

*BC = 0

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Event command.

F16 - No errors detected.

716 - ERROR - Events not supported.

	

Events return a 16 bit value to the commander which uniquely identifies the event. The format of the return value for FDC events is described below.

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�1*�0�0�1�Channel #���Servants Logical Address���������

Channel #: The channel selected by the command

Servants Logical Address: The logical address of this module

*BC = 0

When the FDC event is enabled for a particular FDC channel, the event will be sent to the commander each time FDC buffer ownership is passed back to the commander. FDC event generation is controlled by the FDC Event command and is not affected by the VXIbusVXI Control Event command. The default state of FDC events is disabled (0).

To ensure correct operation of events, an event/interrupt handler must be installed on the commander. Failure to install the handler may cause poor performance or communication failure.

�FDC Supported:

This command is used to determine FDC support.

The syntax of the FDC Supported command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1*�0�0�1�1�1�1�1�0�0�0�1�1�1�1�1��

*BC = 0

A single response word is placed in the Data Low register in the following format:

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��C7�C6�C5�C4�C3�C2�C1�C0�MP�EX�RM�Min. Rev�Maj. Rev��

Maj. Rev: FDC major revision level

Min. Rev: FDC minor revision level

RM: Remote Memory Supported

0 - Remote memory is not supported

1 - Remote memory is supported

EX: Extended Commands

0 - Not Supported

1 - Supported	

MP: Message Transfer Protocol

0 - Not Supported

1 - Supported	

C0..C7: Available channels

0 - not available

1 - available

�Enable Passed Buffer:

This command requests that the Passed Buffer command be utilized by the servant.

The syntax of the Enable passed Buffer command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�0�1�1�0�0�E��

E: Enable Passed Buffer Command = 1, disable = 0

A single response word is placed in the Data Low register in the following format:

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status�1�1�1�1�1�1�1�1�1�1�1�1��

Status:

F16 - No Errors Detected.

716 - Passed Buffer Command Not Utilized.

This command must be sent to modules which indicate support for the Passed Buffer command in their response word to the Channel Initialize command. It was not supported on prior versions of the FDC specificationstandard. It should not only be sent if the servant does not indicates support for the Passed Buffer command in the Channel Initialize response.	

�Passed Buffer:

This command informs the servant that the commander has passed the buffer to the servant.

The syntax of the Passed Buffer command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�0�1�0�Channel #����

Channel # : number 0 - 7 selecting a particular channel

The Passed Buffer command eliminates the requirement for the FDC servant to continuously poll the FDC header bits to determine when the commander passes the FDC buffer. The Passed Buffer command should only be sent only to servants which have enabled to use the command via the Enable Passed Buffer command.

When a FDC servant has enabled the Passed Buffer command, the commander is required to send the Passed buffer command to the servant each time it passes a buffer in the normal manner (after clearing the Read Ready or Write Ready bits).

The FDC commander must not send the Passed Buffer command to servants which do not indicate utilization of the command or which have not been enabled to utilize the command.

�D.�seq hd2 \r 1 \h� Memory Management FDC Commands

FDC Protocol utilizes electronic memory which is accessible to both the commander and the servant to share data. This memory may either be local or remote.

Local memory is owned by the servant. The servant can allocate local memory without regard to other system components. Remote memory is owned or managed by the commander. For the servant to utilize remote memory, the memory must first be granted to the servant. The servant must also verify that it can access the granted memory.

Local Memory

Dual-Port memory which physically resides on the servant

A VXIbusVXI memory device which is a direct servant of the FDC servant

Remote Memory

Dual-Port memory which physically resides on the commander

A VXIbusVXI memory device which is a direct servant of the FDC commander

VME memory which is managed by the commander

Memory management FDC commands provide a negotiating mechanism for remote memory. The commander identifies a pool of remote memory which may be granted to the servant with the Use address, Use Size and Use Access commands. The commander then grants that memory to the servant by sending the Memory Pool Allocate command. If the servant can utilize the remote memory pool, it accepts the allocation. Otherwise, the allocation fails and the memory pool remains with the commander.

The remote memory pool provided to the servant remains valid until another Memory Pool Allocate command is received. If a new remote memory pool is being granted, the prior pool is freed back to the commander, except for memory allocated to existing channels. As these channels are closed, their memory is freed to the commander. The initial remote pool is a NULL pool which has address = 0, size = 0, Access = 0.

The servant allocates memory to FDC channels from its local or remote memory pools. The memory pool to be used by the Channel Initialize and Extended Channel Initialize commands is selected by the Memory Pool Select Command. The selected pool is used until another Memory Pool Select command is received. The default memory pool is the local pool.

The memory allocated to each FDC channel is determined by the servant. The Channel Address and Channel Size commands return the actual memory allocated to each channel from the pool. If the pool of memory is exhausted, further Channel Initialize commands will fail.

Memory Management commands are implemented as standard and Llongw Word Serial commands. Standard Word Serial commands are 16 bits in length. Longw Word Serial commands are 32 bits in length.

�Memory Pool Select:

This command selects the memory pool from which the servant may allocate memory during the Channel Initialize and Extended Channel Initialize commands. The selection is between the local and remote memory pools.

The syntax of the Memory Pool Select command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�0�1�1�0�1�RM��

RM : Selected Memory Pool

0 - local memory

1 - remote memory

A single response word is placed in the Data Low register in the following format:

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status�1�1�1�1�1�1�1�1�1�1�1�1��

Status:

F16 - No Errors Detected

716 - Unable to switch to remote memory

616 - Unable to switch to local memory

516 - No remote memory pool allocated

The default value if this command is not sent is local memory. Local memory is memory which is owned by the servant. Remote memory is memory which is owned by the commander. To use remote memory a memory pool must first be allocated for use and accepted by the servant.

�Memory Pool Allocate:

This command allocates a memory pool identified by the Use Address, Use Size and Use Access commands.

The syntax of the Memory Pool Allocate command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�0�1�1�1�0�AP��

AP : Allocate Identified Memory Pool

0 - De-allocate current remote memory pool

1 - allocate identified remote memory pool

A single response word is placed in the Data Low register in the following format:

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status�1�1�1�1�1�1�1�1�1�1�1�1��

Status:

F16 - No Errors Detected

716 - ERROR - Unable to utilize remote memory

616 - ERROR - Unable to utilize address access mode

616 - ERROR - Unable to utilize data access mode

616 - ERROR - Use Memory Pool Size = 0

To utilize remote memory, a memory pool must be identified with the Use Address, Use Size and Use Access commands. The Memory Pool Allocate command is then sent to the servant. Successful execution of this command grants the memory pool to the servant for allocation to FDC channels.

The servant can have only one remote memory pool at a time. Any prior pool is freed back to the commander when the new pool is accepted. Existing FDC channel areas are not affected by this command.

This command can also de-allocate the current remote memory pool. The remote memory pool size and address are returned to the default values of 0.

�Use Address:

This command is used to specify the address of the remote memory pool. Both the low and high values should be sent to set the complete 32 bit address value.

The syntax of the Use Address command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�1�0�0�1�HI��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Address�����������������

HI: Set High or Low word of 32 bit address

0 - Set Low Word, bits 15..0

1 - Set High Word, bits 31..16

size: value to set

There is no response to this command. It sets a software register value which is used later by the Memory Pool Allocate command.

�Use Size:

This command is used to specify the size of a remote memory pool. Both the low and high values should be sent to set the complete 32 bit size value.

The syntax of the Use Size command are defined in the following tables.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�1�0�1�0�HI��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Size�����������������

HI: Set High or Low word of 32 bit size

0 - Set Low Word, bits 15..0

1 - Set High Word, bits 31..16

size: value to set

There is no response to this command. It sets a software register value which is used later by the Memory Pool Allocate command.

�Use Access:

This command is used to specify the type of access for the remote memory pool.

The syntax of the Use Access command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�1�0�1�1�0��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�1�1�1�1�1�1�1�0�A

32�A

24�A

16�D

64�D

32�D

16�D

8��

Only one address type may be selected. Other types must be disabled. Any combination of data types may be selected.

0 - disabled

1 - selected

There is no response to this command. It sets a software register value which is used later by the Memory Pool Allocate command.

�

E. Extended FDC Commands

Extended FDC commands utilize VXIbusVXI reserved LongwordLong Word Serial commands. The extended commands support up to 216 channels. Extended channel data transfer management commands are not allowed to be sent to channels 0 - 7.

The extended FDC commands are implemented as LongwordLong Word serial commands which contain 32 bits. If the VXIbusVXI Data High and Data Low registers are written 16 bits at a time, the register values which contain bits 31-16 are first written to the Data High register. Next, Register values which contain bits 15-0 are next written to the Data Low register. Both registers may be written simultaneously with a 32 bit access. These registers are read with the same sequence restrictions.

�Extended Channel Initialize:

This command is used to validate and initialize the FDC area.

The syntax of the Extended Channel Initialize command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�0�0�0��

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��Channel #�����������������

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�ADDR���DATA����PC�MODE����

Status: This flag indicates status of the Extended Channel Initialize command.

F16 - The Buffer Initialize command executed with no errors.

716 - ERROR - Channel already open.

616 - ERROR - No valid FDC area can be allocated.

516 - ERROR - This FDC channel number not supported.

416 - ERROR - Unable to use external memory

See standard Channel Initialize command for field definitions.

�Extended Channel Address:

This command is used to retrieve the FDC area base address from the servant.

The syntax of the Extended Channel Address command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�0�0�1��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

A single response data long word is placed in the Data Hi and Low registers in the following format:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��FDC Area Address Hi Word�����������������

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��FDC Area Address Lo Word�����������������

If no valid FDC area can be allocated, the value returned in the response word should be $HFFFFFFFF.

�Extended Channel Size:

This command is used to retrieve the FDC area size.

The syntax of the Extended Channel Size command is defined in the following table:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�0�1�0��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

A single response data long word is placed in the Data Hi and Low registers in the following format:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��FDC Area Size Hi Word�����������������

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��FDC Area Size Lo Word�����������������

If no valid FDC area can be allocated, the value returned in the first and second response words should be 0000000016.

The channel size is defines the total memory allocated to the FDC protocol. It is the sum of the FDC Channel Header and Channel Data Buffer.

�Extended Go to Idle:

This command is used to terminate a Extended Stream transfer. It may also be used to force termination of a Extended Normal transfer.

The syntax of the Extended Go to Idle command is defined in the following table:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�1�0�IM��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

IM : Immediate Flag

0 - Transition to idle state at the end of the current block transfer

1 - Transition to idle immediately and re-initialize the buffer header

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

See standard command Go To Idle for description

�Extended Channel Close:

This command is used to close an Extended FDC channel.

The syntax of the Extended Channel Close command is defined in the following table:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�0�1�1��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

See standard Channel Close command for description

�Extended Transfer to Servant:

This command is used to initiate a data block transfer from the commander to the servant.

The syntax of the Extended Transfer to Servant command is defined in the following table:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�1�0�PR�ST��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

ST : Stream Flag

0 - Transfer is a Normal data block transfer

1 - Transfer is a Stream transfer

PR : Channel Pair Flag

0 - Channel is not to be used as a pair

1 - Channel is to be used as a pair.

Note: The PR bit may be set only for even channels 8,10,12,... If this bit is set, the corresponding channel pair is made active.

A single response long word is placed in the Data Hi and Low registers in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

See standard Transfer to Servant command for description

�Extended Transfer to Commander:

This command is used to initiate a data block transfer from the servant to the commander.

The syntax of the Extended Transfer to Commander command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�1�1�PR�ST��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

ST : Stream Flag

0 - Transfer is a normal data block transfer

1 - Transfer is a Stream transfer

PR : Channel Pair Flag

0 - Channel is not to be used as a pair

1 - Channel is to be used as a pair.

Note: The PR bit may be set only for even channels 8,10,12,... If this bit is set, the corresponding channel pair is made active.

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

See standard Transfer to Commander command for description

�Extended FDC Event:

This command is used to control FDC event generation.

The syntax of the Extended FDC Event command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�0�0�1�1�EV��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

EV: Event Enable Bit

0 - No events are generated by FDC protocol

1 - The Servant will send an event when it passes the FDC area to the Commander.

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Status: This flag indicates status of the Event command.

F16 - No errors detected.

716 - ERROR - Events not supported.

	

Events return a 16 bit value to the commander which uniquely identifies the event. The format of the return value for FDC events is described below.

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�1�0�1�1�1�1�1�Servants Logical Address���������

Extended FDC events do not include the extended channel number as part of the event. To determine the source channel of the event the Extended FDC Event Query command must be sent to the servant. The servant should provide an Extended FDC event queue. Each channel may generate a single event so the queue must be able to accommodate as many events as it allows channels.

�Extended FDC Event Query:

This command is used to identify the channel source of an extended event.

The syntax of the Extended FDC Event Query command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�1�0�0�0�0��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�1�1�1�1�1�1�1�1�1�1�1�1�1�1�1��

A single response long word is placed in the Data Hi and Low registers in the following format:

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��Status����1�1�1�1�1�1�1�1�1�1�1�1��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Extended Channel #�����������������

Status: This flag indicates status of the Event command.

F16 - No errors detected.

716 - ERROR - Not a valid channel.

616 - ERROR - Events not enabled for this channel.

516 - ERROR - No events in the Extended FDC Event Que.

When a commander requests extended FDC events from the servant, it should continue to request additional events until the "No events in the Extended FDC Event Queue" error is encountered to ensure all events are delivered.	

�Extended Passed Buffer:

This command informs the servant that the commander has passed the buffer to the servant.

The syntax of the Extended Passed Buffer command is defined in the following table.

Bit #�����������������31�30�29�28�27�26�25�24�23�22�21�20�19�18�17�16��1�1�0�0�0�0�0�0�0�0�0�1�0�0�0�1��

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Channel #�����������������

The Extended Passed Buffer command must be sent to the FDC servant if the servant indicates support for the passed buffer command in the response from the Extended Channel Initialize command. The Passed Buffer command is sent each time the FDC area is passed to the servant. The Write Ready or Read Ready flag is first cleared and then the command is sent.

�� seq hd2 \r \h �

F. Examples� seq hd2 \r \h �

F.� seq hd2 �11� Channel Initialization Procedure

Only the VXIbusVXI commander can initiate a FDC channel, the VXIbusVXI servant can not initiate a FDC channel.

FDC channel initialization is used by FDC devices to establish a channel between a VXIbusVXI commander and its servant. The FDC channel establishment commands are: Channel Address, Channel Size, and Channel Initialize. These commands setup the FDC channel.

The FDC channel initialization is described in the following table.

VXIbusVXI Servant�VXIbusVXI Commander���Send Channel Initialize command��Return response word����Send Channel Address command.��Return the FDC area base address����Send Channel Size command��Return the FDC area size���If no errors have been reported a valid channel exists.�If no errors have been reported a valid channel exists.���

F.� seq hd2 �22� Data transfer from Commander to Servant

The following table describes how blocks of data are transferred from a VXIbusVXI commander to its servant. It is assumed that the FDC channel has been initialized and is in the idle state. A normal transfer will be requested.

VXIbusVXI Servant�VXIbusVXI Commander���Send Transfer to Servant command.��Receive Transfer to Servant command. If no error set Write Ready bit to 1, set Abort, Read Ready, and End to 0. Return the response value. If error, terminate the transfer and return to the idle state.����Get the response from Transfer to Servant command. If error, terminate the transfer and return to the idle state.���Wait for Write Ready to become 1

Check the Abort bit

Put data into FDC data buffer

Set FDC data size

Set Write Ready bit 0��Wait for Write Ready bit to become 0

Check the Abort and End bits

Read data from FDC data buffer

Set Write Ready bit to 1���.

.

. �.

.

.���Wait for Write Ready to become 1

Check the Abort bit

Put last data block to FDC data buffer

Set FDC data size

Set End bit to 1 for last data block

Set Write Ready bit 0��Wait for Write Ready bit to become 0

Check the Abort and End bits

Read last data block from FDC data buffer

Set End bit to 0���Return to idle state����Wait for End bit to become 0

Return to idle state��

During a transfer to servant, after the VXIbusVXI commander has sent the last data buffer to the servant and has set the End bit, the commander must wait until the VXIbusVXI servant clears the End bit back to 0, then the VXIbusVXI commander will return to idle state for normal transfers. When the servant clears the End bit to 0, it will return to idle state for normal transfers.

�

F.� seq hd2 �33� Data transfer from Servant to Commander

The following table describes the data transfer from VXIbusVXI servant to VXIbusVXI commander. It is assumed that the FDC channel has been initialized. A normal transfer will be requested.

VXIbusVXI Servant�VXIbusVXI Commander���Send Transfer to Commander command.��Receive Transfer to Commander command. Set End, Abort, Read Ready, and Write Ready to 0 then return response value. If error, terminate the transfer and return to the idle state.����Get the response from Transfer to Commander command. If error, terminate the transfer and return to the idle state.��Wait for Read Ready to become 0

Check the Abort bit

Put a buffer of data into the FDC data buffer

Set the FDC data size

Set Read Ready bit to 1����Wait for Read Ready to become 1

Check the Abort and End bits

Read data from FDC data buffer

Set Read Ready to 0��.

.

.�.

.

.��Wait for Read Ready to become 0

Check the Abort bit

Put the last data block to FDC data buffer

 Set the FDC data size

Set End bit to 1 for last data block

Set Read Ready bit to 1����Wait for Read Ready to become 1

Check the Abort and End bits

Read last data block from FDC data buffer

 Set Read Ready and End to 0���Return to idle state��Wait for End to become 0

Return to idle state���

During a transfer to commander, when the VXIbusVXI servant has sent the last data buffer to the VXIbusVXI commander, the servant will wait until the VXIbusVXI commander clears the Read Ready and End bit back to 0 before returning to idle state during a normal transfer. When the VXIbusVXI commander clears the End and Read Ready bit to 0, the commander will return to idle state during a Normal transfer.

�

F.� seq hd2 �44� Transfer Data using a Channel Pair

The following table describes how blocks of data are transferred from a VXIbusVXI commander to its servant using Channel Pair 0 and 1. It is assumed that FDC channels 0 and 1 have been initialized and they are in the idle state.

VXIbusVXI Servant ch0�VXIbusVXI Servant ch1�VXIbusVXI Commander ch0�VXIbusVXI Commander ch1����Send Transfer to Servant command to ch0 with PR bit set���Receive Transfer to Servant command with PR bit set. If no error set Abort, Read Ready, and End to 0 and Write Ready to one for both ch0 and ch1. Return response value. If error, terminate the transfer and return both channels to the idle state.�������Get the response from Transfer to Servant command. If error, terminate the transfer and return both channels to the idle state.�����Wait for Write Ready = 1

Check Abort bit

Put data into FDC area

Set Write Ready bit to 0���Wait for Write Ready = 0

Check Abort and End bits. Read data from FDC area

Set Write Ready to 1���Wait for Write Ready = 1

Check Abort bit

Put data into FDC area

Set Write Ready bit to 0���Wait for Write Ready = 0

Check Abort and End bits. Read data from FDC area.

Set Write Ready to 1�Wait for Write Ready = 1

Check Abort bit

Put data into FDC area

Set Write Ready bit to 0���Wait for Write Ready = 0

Check Abort and End bits. Read data from FDC area

Set Write Ready to 1���Wait for Write Ready = 1

Check Abort bit

Put data into FDC area

Set Write Ready bit to 0��.

.

.�.

.

.�.

.

.�.

.

.���Wait for Write Ready = 0

Check Abort and End bits. Read data from FDC area

Set Write Ready to 1�Wait for Write Ready = 1

Check Abort bit

Put data into FDC area

Set Write Ready bit to 0

Set End bit to 1���Wait for Write Ready = 0

Check Abort and End bits. Read last data from FDC area

Set End to 0�����Return to Idle�Return to Idle�Wait for End = 0�����Return to Idle�Return to Idle��

The End bit is set by the commander when the last buffer of data is transferred. When the End bit is received by the servant, both channels of the pair must go to the idle state even though no explicit termination semaphore is received for the second channel. When the End acknowledge is returned, both of the commander channels transition to the idle state.

F.� seq hd2 �55� Stream Data transfer from Commander to Servant

The following table describes how blocks of data are transferred from a VXIbusVXI commander to its servant using streams. It is assumed that the FDC channel has been initialized and is in the idle state. A stream transfer will be requested.

VXIbusVXI Servant�VXIbusVXI Commander���Send Transfer to Servant command.��Receive Transfer to Servant command. If no error set Write Ready bit to 1, set Abort, Read Ready, and End to 0. Return the response value. If error, terminate the transfer and return to the idle state.����Get the response from Transfer to Servant command. If error, terminate the transfer and return to the idle state.���Wait for Write Ready to become 1

Check the Abort bit

Put data into FDC data buffer

Set FDC data size

Set Write Ready bit 0��Wait for Write Ready bit to become 0

Check the Abort bit

Read data from FDC data buffer

Set Write Ready bit to 1���.

.

. �.

.

.��

NOTE: A Stream channel operates identically to a normal channel except that the End bit does not terminate the data transfer. The End bit is used to separate blocks of data in the same way as the GPIB EOI or CR-LF. Once the sender sets the End bit, the receiver is required to acknowledge it by clearing the End bit. Blocking of data in streams is dependent on the application and is not specified beyond the requirement to acknowledge. To terminate a stream, the Go to Idle command is used.

�

F.� seq hd2 �66� Abort Flag Usage

It is assumed that a normal transfer is requested.

Error Generator�Error Detector��Wait for ownership of the FDC buffer���Set Abort bit to 1

Pass FDC area to error detector with Read Ready or Write Ready����Poll Read Ready or Write Ready for buffer ownership transfer

Check Abort bit for 1

If Abort = 1 then set Abort to 0. If this is a Normal channel also set Read Ready, Write Ready and End bits to 0��Wait for Abort bit to become 0

Return to idle state

Report error through normal instrument specific mechanisms�Return to idle state��

The FDC transfer can be aborted by either the VXIbusVXI servant or VXIbusVXI commander by setting the Abort bit to 1 during a normal transfer. When the VXIbusVXI servant or VXIbusVXI commander is passed the FDC area, it should check the Abort bit to determine whether an error has occurred. Once the Error Generator has set the Abort bit to 1, it is required to pass the buffer to the Error Detector. Tthat the Error Detector acknowledges detection of Abort bit by clearing it to 0 when the FDC area is passed. This completes the abort cycle.

�

G.�seq hd2 \r \h��seq hd3 \r \h��seq rule \r \h��seq observation \r \h��seq recommendation \r \h� Message Transfer Protocol

G.� seq hd2 �11� Introduction

Message transfer protocol (MTP) provides an alternate mechanism for transporting commands and responses into and out of VXIbusVXI modules. It does this by standardizing the usage of an input and an output FDC channel for communication. Modules which support MTP switch from Byte Transfer Protocol (BTP) to MTP when the MTP Activate Word Serial command is successfully executed.

After MTP is activated, communication which would normally have used Byte Transfer Protocol is directed through MTP. If the MTP channel is terminated, the module switches back to Byte Transfer Protocol. MTP provides a more efficient mechanism to communicate messages within a VXIbusVXI system.

MTP utilizes two FDC channels. Channel 4 is defined as the command channel over which instrument commands are sent. The command channel utilizes a Stream transfer to servant FDC channel. Channel 6 is defined as the response channel over which instrument responses are sent. The response channel utilizes a Normal transfer to commander FDC Channel. MTP may also use channel pairs. When channel pairs are used the command channel is on channels 4 and 5, the response channel is on channels 6 and 7.

G.� seq hd2 �22� MTP Establishment and Termination

VXIbusVXI servant support for Message Transfer Protocol is indicated by the response from the FDC supported command. MTP can be established using either local memory channels or remote memory channels.

MTP is established by initializing the MTP channels and then sending the MTP Activate command to the servant. The MTP Activate command requests that the servant disable Byte Transfer Protocol (DIR & DOR = 0), initialize the MTP FDC channels and activate MTP communications.

The response word from MTP Activate informs the commander of the servants success. If the servant is successful, the commander initializes its MTP FDC interface and routes any pending or future messages through MTP. If MTP establishment fails BTP remains enabled and the MTP channels are closed.

MTP termination returns the communications back to Byte Transfer Protocol. It occurs when the servant receives and successfully executes a MTP Terminate command. If successful, the servant re-enables the Byte Transfer Protocol, closes the MTP channels, and returns a success response.

The MTP terminate will fail if there is output data which has been delivered to the commander but has not yet been completely read. The Word Serial Clear command may be sent to ensure that there is no pending output data before the MTP Terminate command is sent.

G.� seq hd2 �33� MTP Communication

Once MTP is established, all commands and responses are communicated through MTP. All VXIbusVXI Word serial commands are functional except the Byte Available (BAV), Byte Request (BRQ) and the Trigger command. Trigger commands are sent using the MTP Trigger command.

The Word Serial Clear command performs the same interface functions in MTP as it does in BTP. However, the Clear command also causes any pending output in the MTP FDC buffers to be discarded. The MTP servant must return ownership of the FDC area(s) for the command channel back to the commander. The MTP driver on the commander must return ownership of the response channel FDC areas to the servant. This returns the interface to a ready state

Transferring instrument commands to the servant is accomplished in the normal manner for stream channels. The commander places a message in the FDC buffer, sets the data size in the channel header, sets the End bit appropriately and passes the FDC area to the servant. The servant retrieves this information from the FDC area and passes the FDC area back to the commander.

The MTP response channel utilizes a Normal FDC Transfer to Commander command to retrieve servant response data. When the commander requests a response, the Transfer to Commander command is sent on the MTP response channel. This makes the response channel active and allows the servant to pass buffers of data to the commander until the entire response is retrieved. The Transfer terminates normally and the response channel returns to the idle state.

Because the VXIbusVXI Trigger command must be sent synchronously to the command stream, MTP defines a trigger command which is sent through the MTP command channel. The MTP trigger command is sent by setting the trigger bit in the FDC header to a one in the command channel and passing the FDC area to the servant. The data buffer contents and size parameters have no meaning in the MTP Trigger command. The servant executes the trigger command and passes the command channel FDC area back to the commander. The commander must ensure that the trigger bit is cleared before sending subsequent commands.

G.� seq hd2 �44� MTP Error Conditions

The commander should maintain a time-out timer on both the command and response channels. The command channel might time out if the servant has not returned the FDC area within the time-out period. The response channel might time out if the response FDC area is not passed to the commander within the time-out period.

The Abort bit in the MTP FDC Header may not be set by either the commander or the servant on the MTP command channel. The servant may set the Abort bit on the MTP response channel in order to discard its output buffer. This may occur if a multiple query error is detected or a Word Serial Clear command is received.

If the commander requests a response when no servant query has generated any response data, the MTP servant returns a NULL response to the commander. A NULL response is a single FDC buffer with a zero buffer size and the End bit set in the FDC channel header. The commander should interpret a NULL response as a IEEE 488 talked with nothing to say error.

G.� seq hd2 �55� Automatic MTP Activation

Controllers which support FDC and MTP protocol may automatically activate MTP communications at system initialization. MTP servant support can be determined by executing the FDC Supported command. If MTP is supported the commander can request activation of MTP any time after the servant enters the VXIbusVXI NORMAL Operation state.

MTP activation may also be requested by the application program or instrument driver. An MTP commander should respect the request to activate MTP to ensure the highest level of perceived interoperability.

G.� seq hd2 �66� MTP General Requirements

RULE G.�seq hd2 \c�66�.�seq rule�11�

MTP SHALL utilize only the Random mode of access for the FDC buffer area.

The Word Serial Clear command may be used to return the MTP interface to a ready state. The Clear command discards any pending commands or responses and returns the MTP FDC areas to their data sources.

RULE G.�seq hd2 \c�66�.�seq rule�22�

The Abort bit in the FDC header of an MTP command channel SHALL NOT be set for any reason.

RULE G.�seq hd2 \c�66�.�seq rule�33�

The Abort bit in the FDC header of an MTP response channel SHALL NOT be set by the commander.

To ensure that the VXIbusVXI servant has been correctly initialized prior to entering MTP, MTP activation and termination is restricted to the NORMAL Operation state. When an instrument transitions to the CONFIGURE state, I/O buffers are flushed and MTP terminates. When the instrument is returned to the NORMAL state, Byte Transfer Protocol will be active.

RULE G.�seq hd2 \c�66�.�seq rule�44�

The transition between MTP and Byte Transfer Protocol SHALL only occur when the VXIbusVXI device is in the NORMAL Operation state. MTP SHALL terminate on entry of the CONFIGURE state.

G.� seq hd2 �77� MTP Commanders

MTP commanders are required to provide support for all MTP modes. This includes support for local and remote memory and single and paired channels. This ensures that MTP compliant components provide a high level of interoperability.

RULE G.�seq hd2 \c�77�.�seq rule�55�

MTP commanders SHALL

support single channel MTP control and response channels

support paired channel MTP control and response channels

support local memory MTP control and response channels

support remote memory MTP control and response channels

MTP commanders must ensure that the MTP channels are initialized before sending the MTP Activate command. MTP channels are established utilizing either local memory or remote memory. The MTP Supported command indicates which type of memory must be used. If remote memory is used, the requested size of the command and response channel buffers are also indicated. If local memory is used, the servant allocates the appropriate memory from its own memory pool.

RULE G.�seq hd2 \c�77�.�seq rule�66�

An MTP commander SHALL initialize FDC channels 4 and 6 before sending the MTP Activate command. If MTP channel pairs are used, the commander SHALL also initialize the FDC channels 5 and 7 before sending the MTP Activate command.

RULE G.�seq hd2 \c�77�.�seq rule�77�

A commander SHALL NOT send the MTP Activate command to the servant if the VXIbusVXI Response Register Read Ready bit is asserted.

OBSERVATION G.�seq hd2 \c�77�.�seq observation�11�

While MTP is active, the VXIbusVXI response register DIR and DOR bits remain false. The commander is not allowed to send the Byte Transfer Protocol commands BAV, BRQ or the Word Serial command Trigger to the servant.

RULE G.�seq hd2 \c�77�.�seq rule�88�

While MTP is active, a commander SHALL NOT send the FDC Goto Idle command to channels engaged in MTP protocol.

RULE G.�seq hd2 \c�77�.�seq rule�99�

A commander engaged in MTP SHALL only send commands only on channel 4 or channel 4 and 5 for channel pairs.

G.� seq hd2 �88� MTP Servants

To provide a basic level of functionality within MTP, a minimum level of support is required of the MTP servant. This ensures that the commander will be successful in switching from Byte Transfer Protocol to MTP.

RULE G.�seq hd2 \c�88�.�seq rule�1010�

If a servant claims conformance to MTP, it SHALL NOT utilize the MTP command and response channels for any other purpose. If the device supports MTP channel pairs then channels 4,5,6 and 7 are reserved. If channel pairs are not supported then channels 4 and 6 are reserved.

RULE G.�seq hd2 \c�88�.�seq rule�1111�

MTP servants SHALL

support single channel MTP control and response channels

support either local memory or remote memory MTP control and response channels

The order of actions taken by the MTP servant as it transitions from Byte Transfer Protocol to MTP is defined to ensure the lowest chance of communication error.

RULE G.�seq hd2 \c�88�.�seq rule�1212�

When a MTP servant executes the MTP Activate command, it SHALL

transition the MTP command channels to stream transfer to servant and pass ownership of the MTP command channels FDC areas to the commander

Ensure that the MTP response channels are initialized and idle

If steps 1 or 2 failed, return an error status

un-assert the DIR and DOR bits in the VXIbusVXI response register and disable Byte Transfer Protocol

Return a success status

RULE G.�seq hd2 \c�88�.�seq rule�1313�

When a servant receives a Word Serial Clear command, it SHALL return the MTP FDC area(s) for the command channel to the commander. It SHALL NOT set the VXIbusVXI response register DIR bit to �a 1.

To send a Trigger command, the MTP commander sets the Trigger bit in the MTP command channel FDC header and passes the FDC area to the servant. The servant must check the Trigger bit each time it receives a command channel FDC area. When the Trigger bit is set, the buffer size and buffer data have no meaning and must be ignored. The commander must ensure the Trigger bit in the FDC header is correctly set for subsequent communications.

RULE G.�seq hd2 \c�88�.�seq rule�1414�

When a MTP servant receives ownership of a command channel FDC area, it SHALL check the Trigger bit in the FDC header. If the Trigger bit is set, the servant SHALL execute the VXIbusVXI trigger function as defined by the Word Serial Trigger command, clear the Trigger bit and pass the FDC area back to the commander.

The MTP Terminate command returns the command and response channels back to the Byte Transfer protocol. To succeed, there must not be any response data which has not been read by the commander. The servant can not recover this data so it would be lost.

RULE G.�seq hd2 \c�88�.�seq rule�1515�

When a MTP servant receives the MTP Terminate command it SHALL

if it does not own all response channel FDC areas return a failed response

enable Byte Transfer Protocol setting DIR and DOR appropriately

ensure that any pending command or response data is transferred to the Byte Transfer Protocol interface

close all channels which were allocated to the MTP

return a success response

�H. MTP Commands

MTP Supportedd:

This command is used to determine MTP support.

The syntax of the MTP Supported command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�1�0�0�1�0�0��

A single response word is placed in the Data Low register in the following format:

15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status�Rsp Buf Size�Cmd Buf Size�1�1�PR�RM��

RM: Remote Memory

0 - Use local memory only

1 - Use remote memory only

PR: Channel Pairs

0 - Channel Pairs are NOT supported

1 - Channel Pairs are supported

Cmd Buf Size: Requested remote MTP command data buffer size

Rsp Buf Size: Requested remote MTP response data buffer size

The requested size fields are only valid when the RM bit is set to 1. These fields are provided to advise the commander of the minimum memory pool that should be offered during the remote memory negotiation. The commander is not required to respect the request however.

The size is calculated as follows:

	1024 * 2size + 8

For example: if size = 2 then the requested size for the FDC area is 4104 bytes.

Status: This flag indicates status of the MTP Supported command.

F16 - MTP supported.

716 - ERROR - MTP not supported.

�

MTP Activate:

This command is used to initiate MTP transferring communications from Byte Transfer Protocol to Message Transfer Protocol.

The syntax of the MTP Activate command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�1�0�0�0�0�PR��

	PR : use channel pairs

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

	Status: This flag indicates status of the MTP Initiate command.

	 F16 - No errors detected.

	 716 - ERROR - remote memory not supported.

	 616 - ERROR - pairs not supported.

	 516 - ERROR - MTP channels not available

	 416 - ERROR - MTP already active.

Channels used by MTP must be initialized before the MTP Activate command is sent. Channels 4 and 6 must always be initialized. Channels 5 and 7 must be initialized if the PR bit is set to 1.

�

MTP Terminate:

This command is used to terminate MTP returning communications to Byte Transfer Protocol.

The syntax of the MTP Terminate command is defined in the following table.

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��1�0�0�1�1�1�1�1�0�0�1�0�0�1�0�1��

A single response word is placed in the Data Low register in the following format:

Bit #�����������������15�14�13�12�11�10�9�8�7�6�5�4�3�2�1�0��Status����1�1�1�1�1�1�1�1�1�1�1�1��

	Status: This flag indicates status of the MTP Terminate command.

	 F16 - MTP successfully terminated

	 716 - ERROR - Pending output data

	 616 - ERROR - MTP not currently active

MTP Terminate is the only provided method for returning communication to Byte Transfer protocol. MTP Terminate will fail if there is pending output data. Pending output data is data which has been sent to the commander which has not been completely read. The indicator of pending output data is one of the MTP response FDC areas is owned by the commander. Once the commander reads all of the data it must return ownership of the FDC area to the servant.

Pending output data can be cleared by reading the remaining response data or sending a Word Serial Clear command.

�

		

		� PAGE �1333�

	

		

		

	-ii-

	-i-

Page � PAGE �666�		Section A: Introduction

Section A: Introduction		Page � PAGE �551�

May 18April 12, 1995	VXIbus Specification VXI-10n	Revision 2.1

May 18April 12, 1995	VXIbus Specification VXI-10n	Revision 2.1

Page � PAGE �181818�		Section B. FDC Devices General Requirements

Section B. FDC Devices General Requirements		Page � PAGE �191919�

Page � PAGE �323232�		Section C: Standard Word Serial Commands

Section C: Standard Word Serial Commands		Page � PAGE �333333�

Page � PAGE �404040�		Section D: Memory Management FDC Commands

Section D: Memory Management FDC Commands		Page � PAGE �393939�

Page � PAGE �465050�		Section E: Extended FDC Commands

Section E: Extended FDC Commands		Page � PAGE �455151�

Page � PAGE �5858�		Section F: Examples

Section F: Examples		Page � PAGE �5757�

Section F: Examples		Page � PAGE �53�

Page � PAGE �6262�		Section G: Message Transfer Protocol

Section G: Message Transfer Protocol		Page � PAGE �6363�

Section G: Message Transfer Protocol		� PAGE �65�

Page � PAGE �6666�		Section H: MTP Commands

Section H: MTP Commands		Page � PAGE �6767�

Section G: Message Transfer Protocol		� PAGE �6765�

