
ICS
ELECTRONICSICS

division of Systems West Inc.

MODEL 488-PC2
IEEE 488.2 Bus Controller
User's Manual

IE
E

E
-4

88
.2

7034 Commerce Circle, Pleasanton, CA 94588
(925) 416-1000, FAX (925) 416-0105 Publication Number 123077
WEB http://www.icselect.com July 2000 Edition Rev 6

Model 488-PC2
IEEE 488.2 Bus Controller
User's Manual

ICS
ELECTRONICSICS

division of Systems West Inc.

LIMITED WARRANTY

Within 60 months of delivery, ICS Electronics will repair or replace this product, at our
option, if any part is found to be defective in materials or workmanship (labor is
included). Return this product to ICS Electronics, or other designated repair station,
freight prepaid, for prompt repair or replacement. Contact ICS for a return material
authorization (RMA) number prior to returning the product for repair. Any software
delivered with this product is only warranted for 90 days from the date of delivery.

CERTIFICATION

ICS Electronics certifies that this instrument was carefully inspected and tested at the
factory prior to shipment and was found to meet all requirements of the specification
under which it was furnished.

EMI/RFI WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause interference to
radio communications. The 488-PC2 Card has been tested and found to comply with the
limits for a Class A computing device pursuant to Subpart J of Part 15 of the FCC Rules
and to comply with the EEC Standards EN 55022 and EN 50082-1, which are designed
to provide reasonable protection against such interference when operated in a commer-
cial environment. Operation of this equipment in a residential area is likely to cause
interference, in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Certificate of Compliance reproduced in Figure 2-2

TRADEMARKS

The following trademarks referred to in this manual are the property of the following
companies:

HP and HPIB are registered trademarks of Hewlett-Packard Corp., Palo Alto, CA
IBM and IBM PC are registered trademarks of International Business Machines

Corporation, Boca Raton, FL
ICS is a registered trademark of ICS Electronics, Systems West, Inc, Milpitas, CA

APPLICABILITY and CHANGES

This manual applies to the 488-PC2 Revision 1 Card and Windows Drivers Version5.0
or later.

Copyright ICS Electronics div Systems West, Inc., 2000

Getting Started
Shipment verification, Software License, Installation, Keyboard
Controller Programs and Testing the Hardware.

General Information
Controller Card Descriptions, Software Capabilities, Supported
Languages , Hardware Specifications, Approvals and Accessories.

488.2 Drivers
Driver Description, WIN and DOS Components, Command Set Quick
Reference List

GPIB Programming
GPIB Programming Concepts, Device Addressing, Command
Conventions, Basic Programming, IEEE-488.2 Programming,
Advanced Programming, Visual Basic and C Program Examples.

DOS Language References
Installation Instructions, Supplied Files, Unique Program Instructions
and Using Interrupts for: Interpreted BASIC, Quick Basic, Pascal
and C/C++ Languages.

488-PC2 Command References
Command conventions, Constants, Errors and Command definitions

Appendix
A1 Background information on IEEE 488.1 Bus, IEEE 488.2 Status
Structure, Protocols, Common Commands and SCPI Commands
A-2 Trouble shooting, Testing and Repair.

Index

Contents

2

4

A

3

1

I

5

I

6

1-1

1

1

Getting Started
1.1 INTRODUCTION

This section provides you with all the information you need to get started
with the Model 488-PC2 IEEE 488.2 Controller Card. This section covers
shipment verification, compatibility with earlier products, switch setting
and installation, software license, backing up your software and the use of
ICS's interactive keyboard command program. Follow the instructions in
this section to install the card in your computer.

Figure 1-1 488-PC2 GPIB Controller Card

1-2

1

1.2 488-PC2 SHIPMENT VERIFICATION

Take a moment to verify you have everything you need. If you ordered the
488-PC2 Card and Software we should have sent you:

(1) Model 488-PC2 IEEE 488.2 Controller Card, Rev 1
(1) 488.2 DOS Driver Disk
(1) 488.2 Windows Driver Disk
(1) Model 488-PC2 User’s Manual

The Driver and Utility programs may be on 3.5 inch disks or on a CD ROM
disk. If anything is missing or damaged, save the shipping carton and
contact ICS immediately. ICS will arrange for a replacement shipment
without waiting for the shipper to process any claim.

1.3 COMPATIBILITY WITH EARLIER PRODUCTS

The 488-PC2 Revision 1 Card is compatible with the Revision 0 Card and
may be used with the earlier drivers in any PC/XT or PC/AT computer.

The 488.2 Driver shipped with the 488-PC2 Card supports DOS programs
written in Interpretive BASIC, Quick Basic, Visual Basic for DOS, Mi-
crosoft Professional Basic 7.1, Pascal, C, Turbo C, or C++. The 488.2
Driver's Dynamic Linked Libraries provide 16 and 32-bit support for C,
C++, Visual Basic for Windows or any other programming language that
follows the Microsoft Windows calling conventions. They may be used
with most existing programs by changing the include file and recompiling
the program. The 488.2 Drivers are only compatible with the Revision 1 or
later 488-PC2 Cards.

Any programs written with earlier software drivers will have to be checked
for command syntax before linking them to the new 488.2 Driver. Quick
Basic programs will have to modify the ieEnterB and ieOutputB commands
for the new command syntax.

1-3

1

1.4 ICS SOFTWARE LICENSE AGREEMENT

Note - Please carefully read this License agreement prior to opening the
media envelope or using the software. By opening the media envelope and/
or using the software, the customer agrees to all provisions of this license.
If you do not agree with the license, you may return this product for a full
refund.

1.4.1 License

In exchange for payment of his invoice, ICS Electronics (ICS) grants the
customer a license in the software subject to the following conditions.

Customer may use the software with any ICS GPIB Controller product and
may not reverse engineer or reverse-compile the software. Customer agrees
the software is copyrighted and may only make archival copies of it.
Customer shall not sublicense or distribute copies of the software without
the written permission of ICS. A transfer or sale of the software to a third
party is permitted, if the third party agrees to this license and the original
purchaser ceases use of the software.

Customer may use ICS's software to make executable programs and
distribute them freely without permission of ICS.

ICS may terminate this license and seek damages if the customer fails to
comply with the license after being notified in writing to cure the failure.
Customer agrees that the software does not include updates and ICS is not
responsible for any damage to the customer's computer or other equipment.

1.4.2 Warranty

ICS warranties for a 90 day period, that the software will execute its
instructions when properly installed on a computer as specified herein. ICS
further warrants the media to be free of defects and workmanship for a like
90 day period. The customer's remedy for a failure in either case is to return
the media to ICS for replacement.

ICS makes no other warranty with respect to the software. In no event shall
ICS be liable for any other incidental or consequential damages from the use
of this software.

1-4

1

1.5 BACK UP YOUR DISK

If the software is on 3.5 inch disks, it is strongly recommended that you
make a backup copy of the Disks supplied with the 488-PC2 Card. Use the
backups for installation and put the original disks in a safe location. The
storage location should be in a temperature stable location and away from
all magnetic fields.

1-5

1

1.6 INSTALLATION

Check ICS's web site at www.icselect.com for the latest information about
installing the 488.2 Drivers and periodically for the latest version of the
488.2 Drivers. or for any updates.

1.6.1 Hardware Installation Procedure

To install the 488-PC2 Card, perform the following steps:

1. Turn off the computer by clicking the Window's 95 or 98 Start
button and then Shutdown. On the Shutdown Window, check the
Shutdown box and click Yes to start the shutdown process. Turn
power off when told it is safe to do so.
On computers with Windows 3.1, Select EXIT and YES when
asked if you wish to Exit Windows. Turn power off when safely at
the DOS prompt.
On computers with DOS, exit any running program and turn power
off.

2. Remove the cover from the computer. Leave the power cord
connected to the computer so that it stays grounded.

3. Locate a unused ISA bus slot and remove its connector cover plate
and save the retaining screw.

4. Cut the antistatic bag containing the 488-PC2 card but do not
remove it from the bag.

5. Touch the computer frame with both hands to be sure that your
body is free of any static electricity.

6. Remove the 488-PC2 card from its antistatic bag and set the rockers
on Switch S1 by following the instructions in Section 1.7. The
factory setting of all switches in the '0' position should work unless
you are installing multiple 488-PC2 cards, want to use interrupts or
DMA.

7. Insert the card firmly into the empty ISA bus slot and fasten it down
with the saved retaining screw. (Note-the 488-PC2 card must be
fastened with the retaining screw for it work correctly.)

8. Replace the cover and turn the computer back on.

1-6

1

1.6.2 Windows 95/98 Software Installation Procedure

Perform the following steps to install the 488.2 Drivers in a PC with
Windows 95 or Windows 98. Note - Close all applications before installing
the software.

1. Make a backup copy of the Windows Driver Disk if on a 3.5 inch
disk.

2. Insert the Windows Driver Disk in the computer's floppy disk drive
or put the CD in the computer's CD ROM drive.

3. If the installation program does not start automatically, click the
Windows' Start menu, point to Run and execute a:\setup

4. Follow the instructions on the screen to complete the software
installation. Setup will install all of the WIN32 files on your
computer.

1.6.3 Windows 3.1 Software Installation Procedure

Perform the following steps to install the 488.2 Drivers in a PC with
Windows 3.1. Note - Close all applications before installing the software.

1. Make a backup copy of the Windows Driver Disk if on a 3.5 inch
disk.

2. Insert the Windows Driver Disk in the computer's floppy disk drive
or put the CD in the computer's CD ROM drive.

2. Click the Windows' Start menu, point to Settings and then execute
a:\setup.

4. Follow the instructions on the screen to complete the software
installation. Setup will install all of he WIN16 files on your
computer.

1.6.4 DOS Software Installation Procedure

The software installation instructions for DOS drivers are included in
Section 5 for each supported DOS language. If you are planning on doing
DOS programming, follow the instructions for your DOS programming
language.

1-7

1

1.7 488-PC2 CONFIGURATION SWITCH SETTINGS

The 488-PC2 contains a nine position rocker switch assembly, S1, that sets
the card's I/O port base address, the interrupt request level, the DMA level,
and the I/O READY wait time. The rocker switch is located in the upper left
of the 488-PC2 Card as shown in Figure 1-2.

The rockers are factory set to the off or '0' position which is fine for most
single card applications. This setting specifies Card I/O address 02E1, no
interrupt level, no DMA Channel and no I/O READY wait states. The
following sections provide specific instructions for setting the switch
rockers

1.7.1 I/O Address Selection

When defining the PC/AT Computer's I/O addresses, IBM set the address
for the GPIB Adapter 0 Card at 02E1 hex. Subsequent GPIB Adapter card
addresses are located in 2000 hex increments above Adapter 0's address as
shown in Table 1-1. If, like most 488-PC2 users, your system has only one
card it should be set to address 02E1. Any additional 488-PC2 cards should
use the next available GPIB Adapter address.

Rockers 13 and 14 are used to set the 488-PC2’s I/O starting address. The
rocker’s correspond to the PC address lines A13 and A14. Use Table 1-1
to convert the two most significant address digits into rocker switch
positions. The CardID parameter identifies the card for the Windows DLL.

When setting the rocker switches, follow the 1 and 0 silk screened on the
card. Do not use the switch's “on” and “off” labels to set the rockers.

TABLE 1-1 I/O ADDRESS ROCKER SETTINGS

 I/O Address CardID Switch Rocker
(Hex) 14 13

02E1* 7 0 0
22E1 6 0 1
42E1 5 1 0
62E1 4 1 1

 *Factory setting
 .

1-8

1
488-PC2 IEEE 488.2 INTERFACE

1 0

L1
L2
L4
D1
D2
W1
W2
13
14

J2J1
A31 A1

(a) 488-PC2 Card Layout

L1
L2
L4
D1
D2
W1
W2
13
14

S
1

1 0

Interrupt Level - none

DMA Channel Selected - none

Wait States Selected - none

Card I/O Address - 02E1 HEX

1 2 3 4 5 6 7 8 9

}
}
}
}

S
1

(b) Factory Settings for the 488-PC2 Configuration Switch

Figure 1-2 488-PC2 Switch Location and Rocker Assignments

1-9

1

1.7.2 Wait State Switch Settings

Rockers W1 and W2 control the insertion of a wait state delay onto the
computer’s I/O READY signal line. This delay, while not required on most
computers, will allow the 488-PC2 to operate in computers with high bus
clock speeds. The 488-PC2's on card oscillator provides the clock signal
to the card's logic so timing is normally not a problem. Bus clock speed is
NOT the same as the CPU clock frequency and is normally a submultiple
of the CPU clock. Most new PC/ATs are designed with a 8 ±1 MHz bus
clock and do not require any wait states for correct operation. Check your
computer's manual for your computer's bus clock frequency and set the W1
and W2 rockers per Table 1-2.

TABLE 1-2 WAIT DELAY SETTINGS

CLOCK FREQUENCY WAIT SWITCHES
(MHz) W1 W2

0 to 9* 0 0*
9 to 20 1 0

 * Factory Setting

1.7.3 DMA Switch Setting

Rockers D1 and D2 select the PC’s DMA channel that the 488-PC2 would
use for transferring data. DMA data transfers can be faster than pro-
grammed data transfer on older, slow computers especially for large blocks
of data. Using DMA data transfers is not advised if the processor clock
speed is greater than 100 MHz. (See Table 1-2) Using DMA is purely a
user’s option; the 488-PC2 will function just as well without using DMA.

Before setting the DMA switches, check your computer’s manual or the
Device Manager for an available DMA channel. IBM has made the
following DMA channel assignments for the PC/AT:

DMA Channel Function
CH 0 Memory refresh
CH 1 SDLC I/O
CH 2 Floppy disks
CH 3 Hard disk

1-10

1

Most stand alone computers don’t have an SDLC interface so channel 1 is
normally the safe channel to use. Only use channels 2 or 3 if your computer
does not have floppy disk drives or a hard disk. Use Table 1-3 to convert
the selected DMA channel into D1 and D2 switch settings.

TABLE 1-3 DMA CHANNEL SETTINGS

SWITCHES
DMA Channel D2 D1

None* 0 0
1# 0 1
2 1 0
3 1 1

*Factory setting
#Recommended DMA Channel

1.7.4 Interrupt Level Settings

Rockers L1, L2 and L4 select the PC’s Interrupt Channel that the 488-PC2
card can use to interrupt the current program. Note that using interrupts is
purely a user’s option; the 488-PC2 will function just as well without
interrupts.

Before setting the Interrupt Level switches, check your computer’s manual
or the Device Manager for available IRQs. In the PC/AT, IBM established
a shared interrupt concept that lets several adapters share the same channel.
The 488-PC2 complies with IBM’s shared interrupt concept and can be set
to interrupt levels 2, 3, 5 and 7. The following are IBM’s interrupt level
assignments for the PC/AT:

Interrupt
Level Users

0 Timer
1 Keyboard
2 Clocks, PC networks, Fixed disk ctlr
3 Serial port #2, PC network, SDLC
4 Serial port #l, BSC, SDLC
5 Parallel port #2
6 Floppy disk controller
7 Parallel port #l, Data Acquisition, GPIB

1-11

1

Use Table 1-4 to convert the selected Interrupt Level into switch settings.

TABLE 1-4 INTERRUPT LEVEL SETTINGS

IRQ Level L4 L2 L1

None * 0 0 0
2 0 1 0
3 0 1 1
5# 1 0 1
7 1 1 1#

*Factory setting
#Recommended GPIB adapter interrupt level

1.8 SOFTWARE ORGANIZATION

The 488.2 Windows Driver software includes DLLs for controlling the
GPIB hardware, files for supporting various languages utility files and
demonstration programs. During installation, the DLLs are placed in the
Windows System directory. The language support files, demos and utility
files are placed in the ICS_GPIB directory. The files are organized into
directories that correspond to the operating system and the supported
language. Software use instructions vary with the computer's operating
system and are described in the section for the appropriate operating system.
ICS_GPIB directory contains a Readme.doc file and ICS's GPIB Keyboard
Controller Program. Refer to Section 3 for more information about the
488.2 Driver.

The 488-PC2 DOS Driver software is organized into directories that
correspond to the languages they support. Software installation instruc-
tions vary with each language group and are described in the particular
section for that language. The root directory on the DOS Driver contains
a Readme.doc file and the PC2_KYBD Interactive Command Line Pro-
gram.

1-12

1

1.9 KEYBOARD CONTROLLER PROGRAMS

The 488.2 Driver includes two Keyboard Controller Programs. GPIBKybd
is a Windows 32-bit program that runs on Windows 95 and Windows 98.
PC2_Kybd is a DOS program and runs on Windows 3.1. Use the program
that matches your computer's operating system.

The Keyboard Controller Program lets a user interactively control GPIB
devices directly from the computer's keyboard and is the recommended way
to test the 488-PC2 Card after its installation. The Keyboard Controller
Program is also useful for testing GPIB (HP-IB or IEEE-488) devices
without writing a program or for trying out device commands on a new
instrument before incorporating them into a program.

1.9.1 GPIB Keyboard Controller Operation

The Keyboard Controller program is installed in the Util directory with
other ICS files. To run the Keyboard Controller program, click the
Window's Start menu, point to Programs and then click ICS Electronics
GPIB. Select GPIBkybd from the submenu.

The program opens with the panel shown in Figure 1-3. The Keyboard
Controller panel is best viewed with monitor screen settings of 1024 x 768
or 800 x 600. Other screen settings may result in a distorted view or lost
switch legends.

The Keyboard Controller launches it automatically runs the 488.2 FindLstn
to learn what devices are connected to the GPIB bus and displays the found
device addresses in the Device Response message box.. If there is more than
one device, enter the correct address in the Device Address box and click
the Set Address button.

The user can also change the Controllers address by entering a new value
into the Controller Address box and clicking Set Address. The Keyboard
Controller defaults to a Controller address of 21 which it uses as the address
of the GPIB controller card in the computer. You only need to change this
address if it conflicts with the address of your device.

The Keyboard Controller enables the user to send or execute the most
popular 488.1 and 488.2 functions by clicking the buttons on the panel and

1-13

1

Figure 1-3 GPIB Keyboard Controller Panel

to send and receive device commands. Once the device address has been
set, clicking on any 488.1 or 488.2 Command button will cause that
command to be executed. The 488.1 buttons generate IFCs, Device Clear,
Serial Poll the device and send the Trigger command. The 488.2 buttons
perform the FindLstn protocol, the AllSerialPoll and the FindRQS proto-
cols. Any device response appears in the Device Response message box.
The Help button, in the upper right, provides a description of each control
and what it does to the device.

To send data or a command to a device, simply type the command in the
Device Command box and click Send. Click Enter to read data from a
device or responses to a query. Device Responses appear in the large
Device Response message box. If Auto Query is checked, then any Device
command that ends with a question mark or includes a question mark (such
as *idn? or A?1) will have its response automatically appear in the Response
message box.

The buttons along the bottom of the Keyboard Controller window set the
bus timeout. One or three seconds is recommended for manual operation.
Use Off when working with a Bus Analyzer. Clicking Exit returns the user
to the Windows operating system.

1-14

1

1.9.2 PC2 Keyboard Controller Program

The PC2_KYBD Interactive Command Line Program is a live keyboard
program for DOS that lets a user control GPIB devices directly from the
computer's keyboard. The PC2_KYBD program is a good way to test the
488-PC2 Card after its installation or to test a GPIB devices's response to
a command before writing your program.

Before running the program, copy the PC2_KYBD.EXE program from the
Util directory to the computer's root directory. To run the program, type
PC2_KYBD. The program will first ask if you want to change the default
address of the GPIB device. The program uses GPIB address 21 as its own
address. Enter a new address or press the RETURN key to accept the default
address of 04 for the GPIB device.

The program then sends an Abort (IFC) to gain control of he bus and an
escape sequence for ICS's minibox modules. The program then uses the
*IDN? query to read an IDN message from the device at the GPIB address
set above. The idn message or a timeout message is displayed to the user.

To send a device command to a device, simply type the command on the
keyboard and press RETURN. The program will address the device as to
listen and output your command. If the command ends with or contains a
question mark, i.e. *IDN? or A?1, then the program will automatically
address the device as a talker and input the response. To input a response
manually, type a question mark and press RETURN.
e.g

?
device response

PC2_Kybd supports a number of 488.1 commands and 488.2 protocols. To
see a list of the supported bus commands or for assistance at any time, type
!help and press RETURN. To send a bus command to the device, start the
command with an exclamation mark. i.e. !spoll serial polls the device.

To exit the interactive command program, type !exit and press RETURN.
Answer N when asked if you want to restart the program.

1-15

1

1.10 Testing the GPIB Card Installation

To test the 488-PC2 card installation, connect a device to the GPIB bus. Use
a 488.2 device if possible. Start the appropriate Keyboard Controller
program as described in Section 1.9.

In the GPIB Keyboard program, the device's address should appear in the
Device Address window. If not, enter the device's primary address from
700 to 730. (7 identifies the first 488-PC2 card in your computer) If the
device uses secondary addresses, enter the devices's address as 70000 to
73030. (Note: Using address 21 will conflict with the 488-PC2 Card's
address setting.)

In the PC2_kybd Program, the device address defaults to 4. Change the
device address to match the GPIB device's address when asked or at any
time with the !addr command. (Note: Using address 21 will conflict with
the 488-PC2 Card's address setting.)

What you do next depends upon the device. If the device is an 488.2
compatible device, send it the *idn? query and read back its idn response
string. Figure 1-3 shows an example of the *idn? query and a typical
response. Next, query the Event Status Register with the *esr? query.
Repeat until the response becomes 0.

If the device is an older 488.1 device, use a device particular command to
make the device do something and/or send back data. i.e. if the device is a
DVM, set it up to make internally triggered readings. Use the Read Device
Response button to read the measured value.

2-1

2

2

General Information
2.1 INTRODUCTION

This section provides general information and specifications for the Model
488-PC2 IEEE 488.2 Controller Card and ICS's 488.2 Driver.

2.2 MODEL 488-PC2 IEEE 488.2 CONTROLLER CARD

The 488-PC2 IEEE 488.2 Controller Card provides the GPIB physical
interface (electrical and mechanical components) for any ISA/EISA PC on
a small half size card. The 488-PC2 Card fits inside any PC with ISA
expansion slots. When used with ICS's 488.2 Driver, the 488-PC2 supports
the 488.2 Driver languages and Microsoft DOS and Windows 3.1/95 and 98
operating systems. The 488-PC2 Card may be used as a GPIB controller or
as a device interface for transferring data to or from the PC.

Figure 2-1 488-PC2 IEEE-488.2 Controller Card

2-2

2

2.3 488.2 DRIVER SOFTWARE CAPABILITIES

ICS's 488.2 Driver provides the functional portion of the GPIB interface
with versatile, easy-to-use GPIB language extensions for your current
programming language. For interpretive BASIC1 programming, the driver
software is contained in a device driver which is loaded when the PC is
powered up. For compiled programs such as C, Pascal or Quick Basic, the
driver software is contained in linkable libraries. For Windows programs,
these libraries are Dynamically Linked Libraries that are loaded as needed
by the operating system.

2.3.1 488.2 Driver Features

The 488.2 Driver software has the following features:

• All required IEEE-488.2 controller protocols and functions for
Quick Basic, Visual Basic for DOS, Professional Basic 7.1, C
and C++ DOS applications. A DLL provides IEEE-488.2
support for MS Windows based applications running on Win-
dows 3.1, Windows 95 and Windows 98.

• 488-PC2 Driver provides 488.1 support for most interpretive
BASICs and libraries for Pascal.

• Standardized commands across all languages provide high
level easy to use command extensions for your program lan-
guage plus the ability to generate low level bus mnemonics for
custom commands.

• Automatic initialization of default values at power on.

 • Include files for each language to minimize programming
effort.

• Timer functions for program delays or status checking.

• Interactive Keyboard Controller Programs for testing GPIB
devices or the 488-PC2 hardware.

1 Throughout this manual, the term BASIC refers to Interpretive BASIC.

2-3

2

2.3.2 Supported Languages

Included 488-PC2 drivers support:
GW BASIC (Ver 3.11 and 3.22)
BASICA (Ver 3.11 and 3.22)
Vectra BASIC (Ver 3.11 and 3.22)

Included libraries support:

DOS Languages:
Quick Basic (Ver 4.5)
Microsoft Professional BASIC (Ver 7.1)
Microsoft Visual Basic for DOS (Ver 1.0)
Borland Turbo C for DOS (Ver 3.0)
Microsoft Quick C (Ver 2.5)
Microsoft Pascal (Ver 4.0)
Borland Turbo PASCAL (Ver 4.0)

Windows 3.1 Languages:
Borland Turbo C++ for Windows 3.1
Microsoft Visual C++ (Ver 1.0 and 1.5) (16-bit programs)

Windows 95 and Windows 98 Languages:
Borland C/C++ (Ver 2.0, 3.0 and 4.0)
Microsoft Visual C++ (Ver 6.0)
Microsoft Visual Basic for Windows (Ver 4.0, 16-bit DLL)
Microsoft Visual Basic for Windows (Ver 6.0, 32-bit DLL)

Note: QBASIC from Microsoft is the same as Quick Basic and it is not
supported.

2-4

2

2.4 IEEE-488 BUS SPECIFICATIONS

The GPIB Interface on the 488-PC2 conforms to the IEEE STD 488.1
specification. Drivers are tristate devices, capable of driving up to 14 other
Bus compatible devices over 20 meters of cable. The connector is the
standard IEEE-488 24-pin connector with metric studs. Signal pin assign-
ments and a description of the GPIB bus's operation are provided in
Appendix A1. The data transceivers in the 488-PC2 will not cause latchup
in older GPIB devices.

2.4.1 Controller Functions

As an IEEE 488.2 Bus controller, the 488-PC2 performs AH1 and SH1
handshakes plus controller subsets C1 through C4, and C9 depending upon
the user’s program. These subsets include: single and extended addresses,
service requests, remote enable, device trigger, device clear, interface clear,
serial poll, parallel poll, pass control, and take control. This enables
messages to be transferred from

a) Computer to device(s)

b) Device to computer

c) Device to device(s)

d) PC to PC, or PC to other controllers

The Controllers address 31 talk/listen primary addressable devices and 930
secondary addressable devices. The 488-PC2 responds to its primary
address when acting as a device or when taking control.

The 488-PC2 functions as IEEE-488.2 controller and performs the follow-
ing protocols:

ALLSPOLL
FINDLSTN
FINDRQS
RESET

2-5

2

2.4.2 Bus Device Functions

As a device, the 488-PC2 becomes a transparent IEEE 488 Bus-to-PC
interface with AH1, SH1, T2, TE0 L2, LE0, SR1, RL2, PP1, DC1, DT1, C0
and E1 capabilities depending upon the user’s program. When addressed
as a listener, the 488-PC2 inputs data bytes from the Bus and passes them
to the computer. When addressed as a talker, the 488-PC2 accepts data
bytes from the computer and handshakes them onto the 488 Bus. Data
transfer can either be under program control, or implemented as a block
transfer under DMA control.

The 488-PC2 will respond to a serial poll by outputting the data stored in
its serial poll response register. With the exception of the DIO7 bit, the bit
pattern and meanings are user defined.

2-6

2

2.5 488-PC2 CARD SPECIFICATIONS

2.5.1 Architecture

The 488-PC2 card contains an NEC7210 IEEE 488 Bus Controller chip,
address decoding logic, DMA/Interrupt selection logic and a buffer for
sensing GPIB signal status. The 488-PC2 Bus controller chip is controlled
by sending it data and commands via the PC’s I/O Bus. The 488-PC2’s
address control switches lets you set the 488-PC2’s I/O address from 02E1
hex to 62E1 hex in 2000 hex increments (Default address is 02E1. The 488-
PC2 card uses 9 separate I/O addresses to address and access its control
registers and the GPIB signal buffer.

BASIC programs that control the IEEE 488 bus use a 16K byte memory
resident device driver to interface with the 488-PC2 card. Programs
written in other languages use loadable libraries that link to the program at
run or compile time.

2.5.2 PC Interrupt

The 488-PC2 has a single, switch selectable interrupt level. Assignable
interrupt levels are 2, 3, 5, and 7. Setting all switches to off disables the
hardware interrupts.

2.5.3 DMA

The 488-PC2 supports DMA data transfer in system controller, active
controller or device operating modes. Switch selectable DMA channels are
1,2, and 3 (default is 1). Setting all switches off disables DMA transfers.

2-7

2

2.5.4 Data Transfer Capability

Data transfer rate under program control is proportional to the CPU speed
and processor type. This rate varies from a 44 Kbytes/sec with the original
IBM PC to over 200 Kbytes/second with a 486 processor as shown in Table
2.1. Data transfer rate using DMA is relatively constant at 240 Kbytes/sec.
Maximum data block size for DMA transfers is 64 kbytes.

TABLE 2-1 488-PC2 TRANSFER RATES (BYTES/SEC)

CLOCK TRANSFER RATES
PC MODEL RATE NO DMA W/ DMA

IBM XT 4.77 MHz 44.5 K 238 K
386AT 20.0 MHz 160 K 204 K
486AT (Dx2) 66/33 MHz 210 K 240 K

2.5.5 Physical

Size One-half size PC card, 5 inches long

PC Bus Compatible with PC/XT/AT and PS/2 models 25 and 30,
ISA and EISA buses.

Slot Fits in any available PC slot

Power +5 ±0.2 Vdc at 500 mA max.

Connector IEEE 488 Bus Interface: Amphenol 57-20240 style with
metric lock studs

2-8

2

2.5.6 Certifications and Approvals

Meets limits for Part 15, Class A of US FCC Docket 20780 and complies
with EEC Standards EN 55022 and 50082-1. CE Certificate of Compliance
reproduced in Figure 2-2.

GPIB CONTROLLER

488-PC2

1995-1996

Figure 2-2 488-PC2 CE Certificate of Compliance

Approved

2-9

2

2.6 ACCESSORIES

ICS provides the following optional accessory items for use with the 488–
PC2 Controller Card.

Part No. Accessory

104705 Double shielded Bus Cable with stackable bus connectors,
1/2 M long

104710 Double shielded Bus Cable with stackable bus connectors,
1 M long

104720 Double shielded Bus Cable with stackable bus connectors,
2 M long

104740 Double shielded Bus Cable with stackable bus connectors,
4 M long

105705 Double shielded Bus Cable with a straight-in bus connec-
tor, 0.5 M long

105710 Double shielded Bus Cable with a straight-in bus connec-
tor, 1.0 M long

105720 Double shielded Bus Cable with a straight-in bus connec-
tor 2.0 M long

123077 Spare User's Manual

3-1

3

3

488.2 Driver
3.1 INTRODUCTION

This section describes ICS's 488.2 Driver's support for Windows 95 and
Windows 98, Windows 3.1, and support for DOS. This section also
includes a description of the Command Set characteristics, Command Set
Quick Reference lists and selection criteria.

3.2 488.2 DRIVER WIN COMPONENTS

ICS's 488.2 Driver provides Win32 support for C/C++ and Visual Basic
applications using the 488-PC2 Command Sets. The following paragraphs
describe the Driver's software components. Figures 3-1 and 3-2 show how
they interact to control the GPIB hardware.

3.2.1 Components

1. PC2W32.DLL - A 32-bit thunk DLL that implements the 488-PC2
Command Set for Windows 95 and 98.

2. PC2W16.DLL - A 16-bit intermediate DLL that implements the
488-PC2 Command Set for Windows 95 and 98.

3. PC2W.DLL - A 16-bit DLL that implements the 488-PC2 Com-
mand Set and controls the 488-PC2.

4. PC2W32.lib - A 32-bit library file with the 488.2 Driver func-
tions. Used for linking C/C++ programs with the
PC2W32.dll.

3-2

3

5. PC2W.h - C/C++ Language header file for accessing the
488.2 Driver functions

6. PC2W32.bas - A Visual Basic file with program constants and
Command Set declarations for linking 32-bit ap-
plications to the 488-PC2 Command Set. Com-
bines PC2W.bas and Global.bas files for 32-bit
applications.

7. PC2W.bas - A Visual Basic file with program constants and
Command Set declarations for linking 16-bit ap-
plications to the 488-PC2 Command Set.

8. Global.bas - A Visual Basic file with program variables for 16-
bit Applications.

9. Readme.doc - A test files with file descriptions and late
 Readme.txt - information about the 488.2 Driver.

Win32 C Applications
for 488-PC2 Cmd Set

PC2W.h
PC2W32.lib

PC2W32.dll

GPIB Hardware

PC2W16.dll

PC2W.dll

Win32 VB Applications
for 488-PC2 Cmd Set

PC2W32.bas

Windows Interface

Figure 3-1 Win 32 Components Organization for
Windows 95/98

3-3

3

3.2.2 32-Bit Applications

Figure 3-1 shows how the files work together to control the GPIB bus from
32-bit Windows applications. The PC2W.h or PC2W32.bas header files are
included or linked with the application to specify the 488.2 Driver constants
and define command syntax and variables. The PC2W32.lib files allow C/
C++ applications to make calls to the PC2W32.dll. Visual Basic applica-
tions make direct calls to the PC2W32.dll. PC2W32.dll and PC2W16.dll
are thunk layer DLLs that convert the 32-bit calls into 16-bit calls. The
PC2W.dll interprets the 488-PC2 commands to operate the GPIB hardware.

Win16 C Applications
for 488-PC2 Cmd Set

PC2W.h
PC2W.lib

GPIB Hardware

PC2W.dll

Win16 VB Applications
for 488-PC2 Cmd Set

PC2W.bas

Windows Interface .

Figure 3-2 Win 16 Component Organization for Windows 3.1
or Windows 95

3.2.3 16-Bit Applications

Figure 3-1 shows how the files work together to control the GPIB bus from
16-bit Windows applications. The PC2W.h or PC2W32.bas header files are
included or linked with the application to specify the 488.2 Driver constants
and define command syntax and variables. The PC2W.lib files allow the C/
C++ applications to make calls to the PC2W.dll. Visual Basic applications
directly call the PC2W.dll. The PC2W.dll interprets the 488-PC2 com-
mands and operates the GPIB hardware.

3-4

3

3.3 DOS Language Support

The 488.2 Driver has the following components for DOS Languages.

3.3.1 C/C++ Language Support

Libraries and header files that are linked to the C/C++ program.

1. PC2INC.H Header file for accessing the 488.2 Driver func-
tions

2. LMSCPC2.LIB Library for MS large memory model.

3. MMSCPC2.LIB Library for MS medium memory model.

4. SMSCPC2.LIB Library for MS small memory model.

5. LMSCPC2.LIB Library for Borland large memory model.

6. MMSCPC2.LIB Library for Borland medium memory model.

7. SMSCPC2.LIB Library for Borland small memory model.

3.3.2 DOS Quick Basic/Professional Basic Support

Libraries and header files that are linked to the Quick Basic program.

1. PC2INCL.BAS An include file for the 488.2 Driver functions

2. PC2COM.BAS An include file with the 488.2 Driver constants,
settings and variables.

3. PC2QBDOS.LIB 488.2 Driver library for making Quick Basic .exe
programs.

3. PC2QBDOS.QLB 488.2 Driver library for running programs in the
Quick Basic environment.

4. PC2QBDOS.OBJ 488.2 Driver library for making other libraries.

3-5

3

3.3.3 DOS Pascal Language Support

1. GPIB.TPU Library file with Turbo Pascal 488.1 function
calls.

2. GPIB.PAS GPIB.TPU source file.

3. PC2TPDVR.OBJ Object file with 488.1 functions for Turbo Pascal
programs.

4. MSPC2.INC Library file with MS Pascal 488.1 function calls.

5. PC2MSPDV.LIB Library file with MS Pascal 488.1 functions.

3.3.4 DOS BASIC Language Support

Following are loaded into memory at the start of the program.

1. ICSDECL.BAS Sample BASIC program header file.

2. PC2-DRVR.BIN 488-PC2BASIC Driver

3. LOADER.BIN Routine to generate pointers for BASIC driver
commands.

3.3.5 Utilities for DOS and Windows

1. GPIBkybd.exe - An interactive graphical control utility for Win-
dows 95/98 that lets a user communicate directly
with GPIB devices without having to write a
program.

2. PC2wKybd.exe - A console mode control utility for Windows 3.1
that lets a user communicate directly with GPIB
devices without having to write a program.

3. PC2_kybd.exe - An interactive control utility for DOS that lets a
user communicate directly with GPIB devices
without having to write a program.

3-6

3

3.4 DRIVER COMMANDS

Table 3-1 provides a brief listing of the 488.2 Driver commands and their
compatibility across languages and operating environments. Table 3-1
should only be used as a quick reference guide. Refer to the Command
Reference Section for a complete description of each command, its required
parameters, parameter types, and examples. The commands are listed with
mixed case letters as they would be used in Compiled Basic, C or C++
programming for better legibility. For Interpretive BASIC programs, the
commands would be written as all capitals.

The Compatibility columns indicate which languages can use the com-
mand: P = PASCAL, B = BASIC, Q = Quick, Professional or Visual Basic,
C = C/C++ and W= Windows 3.1 or Windows 95 and 98.

TABLE 3-1 488.2 DRIVER COMMANDS

 MNEMONIC Compatibility DESCRIPTION

P B Q C W

 ieAbort • • • • • Outputs an IFC pulse to clear
all devices off the GPIB bus
and asserts ATN to take con-
trol of the bus.

 ieAllSpoll • • • Performs IEEE 488.2 Serial Poll All
(AddrList, RespList) Devices protocol. Serial polls all

listed bus devices and returns a list of
the results.

 ieClose • • • Cleans up drivers and restores
system environment. Must be called
at end of program and before all ieInits
except for the first ieInit.

 ieDevClr • • • • • Sends the selected device clear
(DevAddr) command (SDC) to device(s) or the

universal device clear (DCL)
command to all devices.

 ieDevice • • Installs a Bus device driver in
(DevAddr, DOSPort) place of LPTn or COMn.

3-7

3

 ieEnter • • • • • Inputs data from bus device into
(DevAddr, InString) a string variable. String terminator

is specified by the EOL command.

 ieEnterA • • Inputs data from bus device into
(DevAddr, InString) an array variable. Data terminator

is specified by the EOL command.

 ieEnterB • • • • • Inputs data from bus device into
(DevAddr, InString) a string variable. Input is terminated

when the EOI line is detected
or InString is full.

 ieEol (DevAddr, • • • • • Sets input and output termina-
OutEOL, tors for the specified bus device.
OutEOLStr, Default output termination is CR LF
InEOL, with EOI asserted during the LF.
InEOSByte) Default input terminator is LF

or EOI line true.

 ieErrPtr • • Assigns variables to keep track
(IOErrCode, of bus transfer errors and count
IOBytes) of input/output string bytes.

Execute before other commands

ieEventEnable • Enables notification messages of
(Addr, hWnd, wEvMask) hardware events to be sent to a particu-

lar window.

ieEventStat • • Function returns an integer that speci-
fies what event occurred:
1 = SRQ, 2 = Time-out, 4 = Error.

ieFindLstn (AddList, • • • Performs the IEEE 488.2 Find Lis-
ResultList) tener protocol and returns a list of

found listeners
.

ieFindRQS (AddrList, • • • Performs the IEEE 488.2 Find
Device Requesting Service protocol
and returns the address of the first

TABLE 3-1 488.2 DRIVER COMMANDS (CONT.)

 MNEMONIC Compatibility DESCRIPTION
P B Q C W

3-8

3

TABLE 3-1 488.2 DRIVER COMMANDS (CONT.)

 MNEMONIC Compatibility DESCRIPTION
 P B Q C W

ieFindRQS cont'd device found requesting service and
its status byte response. Returns 3131
if no device found that needs service.

ieGotoStby • • Makes the 488-PC2 a Standby Con
troller and de-asserts ATN if the 488-
PC2 was an active controller.

ieGPIBStat • • Function reads the status of the GPIB
control and handshake lines. Returns
an integer value between 0 and 255.

ieInit • • • • • Initializes the 488-PC2's hardware, sets
(IOPort, MyAddr, card's I/O port address, Bus address
Setting) and DMA/Interrupt/System Control

ler parameters.

ieLlo • • • • • Sends local lockout message (LLO) to
all devices.

ieLocal • • • • • Sends a go-to-local message (GTL) to
(DevAddr) DevAddr. If Addr ≤-1 or ≥31, the card

clears the remote message (turns the
REN Bus line off)

ieOutput • • • • • Outputs a string to DevAddr. String
(DevAddr, OutString) terminator is specified by the EOL

command.

ieOutputA • • Outputs data in an array to DevAddr.
(DevAddr, DataSeg, Data terminator is specified by the
ByteCnt) EOL command.

ieOutputB • • • Outputs a string or binary data
(DevAddr, OutString) to DevAddr. String or data is termi

nated with EOI asserted on last byte.

iePassCtl • • Passes control to an inactive bus
(DevAddr) controller at address DevAddr.

3-9

3

TABLE 3-1 488.2 DRIVER COMMANDS (CONT.)

 MNEMONIC Compatibility DESCRIPTION
P B Q C W

iePPoll (PResp) • • • • • Conducts a parallel poll of all config-
ured devices. Returns a response
byte value (0-255)

iePPollC • • • • • Configures DevAddr to respond to a
(DevAddr, ConfigBit) parallel poll (true or false) on line 0-7

as specified in ConfigBit.
0-7 = False response on lines 0-7
8-15 = True response on lines 0-7

iePPollU (DevAddr) • • • • • Sends DevAddr the parallel poll dis-
able command. If Addr≤--1 or ≥31, all
devices are sent the unconfigure com-
mand.

ieRemote (DevAddr) • • • • • Addresses DevAddr to listen and sends
it the remote enable message by
setting REN true. If Addr≤--1 or ≥31,
then just the REN line is set true.

ieReset (AddrList) • • • Performs the IEEE 488.2 Reset proto-
col on all devices and sends *RST
command to all listed devices.

ieSend (CmdString) • • • • • Sends user specified Bus commands
or data to the Bus. CmdString is a
string of English-like Bus commands
and data.
e.g. (CMD="UNT LISTEN 4 SEC 0
DATA ' T1'"). ieSend mnemonics and
commands are listed in the Command
Reference section under the ieSend
command and described in Appendix
A1.

ieServiceDisable • Function disables driver call to user's
(ServCode) program when specified service

 event occurs.

3-10

3

ieServiceEnable • Function enables driver to call user
(ServCode, SRQServ programs when specified service
[,TOutServ[,ErrServ]]) event occurs.

 Serv Codes are:
1 = SRQ, 2 = Time-out, 4 = Error.

User programs are: SRQServ,
TOutServ and ErrServ.

ieSPoll • • • • • Serial polls DevAddr. Returns the
(DevAddr, SResp) response byte as value (0-255) .

ieSRQStat • • Function returns an integer 0 or 1 that
specified the logical state of the SRQ
line.

ieStatus • • • • Reads status information about the
(StatusCode, Status) interface and the last called command.

StatusCode specifies the information
type. Returns value (0-255) in the
Status parameter.

ieTakeCtl (Mode) • • Commands the 488-PC2 change from
a standby controller to an active con
troller, take control of the bus and
assert ATN. Mode selects control
method:

Mode = ASYNC, SYNC or EOI.

ieTimeOut (Time) • • • • • Sets the handshake timeout in milli
seconds (Time)

Time = 0, infinite time-out
Time = 1 to 32767, time-out in ms.
Time = -1 to -32767, time-out in

(Time+65,536)ms.

ieTrigger (DevAddr) • • • • • Sends the bus trigger command (GET)
to DevAddr. If Addr≤-1 or ≥31, sends
the GET command to all listeners.

TABLE 3-1 488.2 DRIVER COMMANDS (CONT.)

 MNEMONIC Compatibility DESCRIPTION
 P B Q C W

3-11

3

TABLE 3-1 488.2 DRIVER COMMANDS (CONT.)

 MNEMONIC Compatibility DESCRIPTION
 P B Q C W

ieWaitSRQ • • Function suspends program until SRQ
(SleepTime) is asserted or sleep time expires.

SleepTime is in milliseconds. Func-
tion returns SRQ state when returning:

1 = SRQ asserted, 0 = not asserted

TIME UTILITIES

msDelay(ms) • • Suspends program execution for ms
milliseconds.

icsTimer • • Reads high resolution system timer.
Returns number of 215 µsec periods
since midnight.

isTimeOut(msMark) • • Sets background time mark when first
called. Later calls check to see if
system time is greater than the time
mark. msMark is in milliseconds.

4-1

4

4

GPIB Programming
4.1 INTRODUCTION

This section describes how to use the 488.2 Drivers to write programs to
control GPIB devices, describes Visual Basic and C++ program examples,
and supporting Test and Measurement Application Programs.

4.2 BASIC GPIB PROGRAMMING TECHNIQUES

This section describes some basic GPIB programming concepts and is
intended as a guide for anyone doing GPIB programmer. A new GPIB user
should read the description of the GPIB bus operation in Appendix A1
before proceeding. The concepts described below are general in nature.
Always refer to the selected Command Set Reference for the exact param-
eter definitions.

Also note that variable names used in the command examples are place-
holders and can be changed to make them more descriptive for your
program. Outstring$ can become CmdStr$, DVMSetup$ etc. Similarly,
InString$ can become Rdg$, OvenTemp$ etc. What is important is the
order of the variables and their definitions.

4.2.1 GPIB Program Outline

A typical GPIB program has the following steps:

1. Initialize the GPIB Controller Card and the bus.
2. Verify that the device(s) is (are) present.
3. Initialize the device(s) by sending it setup commands etc.
4. Read data or a response back from the device.

4-2

4

The good news is that most GPIB programs only use six to eight of the 42
commands available in the 488-PC2 command set. Once you have
mastered these few commands, you can make programs of any degree of
complexity and rarely ever need another command. Figure 4-1 shows a
typical test setup with two instruments. It uses just six 488-PC2 commands
to initialize the instruments, generate analog outputs and to take readings.

In some cases, it may be necessary to check a device's status to see if it has
completed a task or has data ready before reading data from a device. It may
also be necessary to send a device some special GPIB bus commands to put
it in a configure mode. These actions are also covered in the following
paragraphs.

IBM PC or Clone
with a 488-PC2 Card

4891 Power
Supply Programmer

HP 3478A DVM

488-
PC2

04

02

Vout

IEEE 488

Figure 4-1 A Small GPIB Test System

4.2.2 Device Addressing

The GPIB bus uses 32 addresses from 0 to 31. All GPIB devices are
addressed by a primary address between 0 to 30 so each device is set to a
unique address. Address 31 is the Untalk or Unlisten address and is not a
device address. The GPIB Controller card is considered a bus device and
has its own bus address. ICS and Hewlett-Packard Controllers default to
address 21; National Instruments and other controllers default to address 0.

Some devices use secondary addresses to address a channel or subfunction
in the device or to escape to a setup mode. An example is ICS's 4896 Quad
Serial Interface which uses secondary addresses to select a serial channel.
There are 31 possible secondary addresses, 0 to 30. Again, secondary
address 31 is not used by a device.

4-3

4

A Windows operating system can support multiple GPIB Controller Cards.
The GPIB Controller Card address is the CardID. In the 488-PC2 Com-
mand Set, the first CardID is 7, the second card is 6 etc.

The 488-PC2 Command Set combines the card, device primary address and
device secondary address into a single DevAddr variable. The overall form
of DevAddr for Windows environments is:

DevAddr = CardID + pp + [ss]

where [ss] is the optional secondary address. To address a device at primary
address 4,

DevAddr = 704

To address a 2nd channel at primary address 4,

DevAddr = 70402

For DOS programs, DevAddr reduces to:

DevAddr = pp + [ss]

where [ss] is the optional secondary address. To address a device at primary
address 4,

DevAddr = 4

To address a 2nd channel at primary address 4,

DevAddr = 402

The No Address concept is used when a command applies to all of the
devices on the bus. A NoAddr constant has been predefined to simplify the
programming. An example is

ieDevClr(DevAddr%)

sends the SDC command to the specified device.

ieDevClr(NoAddr%)

sends the Clear command to all devices on the bus who are addressed as
listeners.

4-4

4

4.2.3 Command Calling Conventions

For Visual Basic, C and Pascal, the 488-PC2 commands return a variable
that indicates if the command was correctly executed. In these languages,
the 488-PC2 commands are called by equating them with an error variable
i.e.

ioerr% =ieInit(IOPort, MyAddr, Setting)

The error variable can be checked in a standard routine to display any error
conditions to the program operator.

In Quick Basic, Professional Basic and other interpreted languages, the
commands do not return a status variable. An example is:

CALL ieInit(IOPort, MyAddr, Setting)

In Windows programs, the command syntax often includes an additional
variable for the command length or number of parameters in a list. This
extra variable is simply due to differences between the DOS and Windows
calling conventions. An example is the ieOutput command:

For Windows:

ioerr% = ieOutput(DevAddr, OutString$, L)

For DOS:

CALL ieOutput(DevAddr, OutString$)

The following paragraphs show how to initialize, command and control
GPIB devices. Refer to the Command Reference for the correct syntax and
for command examples in your programming language.

4-5

4

4.2.4 Initializing the Controller and GPIB Bus

The 488-PC2 Card is initialized to be sure that it is the System Controller
and is the Controller-in-charge of the bus. The bus is initialized to be sure
that all of the devices are in a non-addressed state after their power turn-on.
This is done by having the GPIB Controller issue an Interface Clear
command (IFC pulse) and assert the REN line. It is also a good idea to check
or set the bus timeout. The bus timeout is the amount of time that the
program will wait for a device to respond to a command before proceeding.
In the 488-PC2 Command Set, this is done with the following commands:

ioerr% =ieInit(IOPort, MyAddr, Setting)
'initializes the Driver

ioerr% =ieAbort 'sends IFC, sets REN on
ioerr% = ieTimeOut (Time) 'sets bus timeout

The 488-PC2 Command Set returns an error status value in the ioerr%
variable when it is finished. If the value is zero, the command was
successfully executed. A nonzero value means the command was not
executed correctly and that the device probably was not there and/or did not
receive the Output String.

4.2.5 Sending Data to a Device

Data or device commands are normally sent to a device as strings of ASCII
characters. This could be the setup commands to a DVM so it knows the
type of reading to take, to changing the baud rate in a GPIB-to-Serial
converter, or to output a value or data to a device.

In the 488-PC2 Command Set, ASCII data is sent by first specifying the
string and then calling the ieOutput command:

Windows example:

Outstring$ = "Command to be sent"
L = Len(Outstring$)
ioerr% = ieOutput(DevAddr, OutString$, L)

Quick Basic example:

Outstring$ = "Command to be sent"
Call = ieOutput(DevAddr, OutString$)

4-6

4

The IEEE 488.2 Standard states that all command strings need to be
terminated with a linefeed character or by asserting the EOI line on the last
character. ICS's 488.2 Driver defaults so that ieOutput automatically
terminates the output string by appending a LF and asserting EOI. The
termination can be changed for a specified device with the ieEOL com-
mand. If the output data is binary data, use the ieOutputB command which
terminates the output by only asserting EOI on the last character.

4.2.6 Reading Data from a Device

ASCII data strings are read from a device by first specifying an empty string
and then reading the data into the string. Data is read until a terminator is
found or the defined Input string is full. Typical GPIB message terminators
are linefeed or EOI asserted. An example in the 488-PC2 Command Set is:

Instring$ = String$(Lin, 32) 'fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

where Lin is the length of the input buffer. The 488-PC2 ieInput command
defaults to terminating when a linefeed or EOI is sensed. For binary data,
use the ieInputB command. The ieEOL command can be used to change
the terminator for a specific device.

4.2.7 Clearing a Device

Some devices have buffers that accumulate unwanted data and it occasion-
ally becomes necessary to clear out the old data or return a device to a known
condition. This is done by sending the device the Device Clear Command.
In the 488-PC2 Command Set this is done by:

ioerr% = ieDevClr(DevAddr)

4.2.8 Reading Device Status

Some times it is desirable to read the device's Status Register to see if it has
data, has a problem or has completed some task. IEEE-488 devices report
their status, Status Register contents, in response to Serial polls. Serial polls
provide up to 8 bits of information from a single device and can also identify
a device that has requested service. Consult the device's instruction manual
for the meaning of the bits in its Status Register. IEEE-488.2 compliant
devices also report their status in response to the *STB? query. (See section

4-7

4

A1.2 in the Appendix for information about the 488.2 mandated Status
Reporting Structure). In the 488-PC2 Command Set, the status register is
serial polled and the value placed in the DevStatus variable by:

DevStatus = ieSPoll(DevAddr)

To use the *STB? query do:

Outstring$ = "*STB?"
L = Len(Outstring$)
ioerr% = ieOutput(DevAddr, OutString$, L)
Instring$ = String$(Lin, 32) 'fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

4.2.9 Sending Custom Bus Commands to a Device

Sometimes it is necessary to send custom Bus Commands to a device to
address a device as a talker or as a listener or to enter a special configuration
mode. Bus commands are single character commands that are sent to a
device with ATN on. Refer to Table A-1 in the Appendix for a list of these
commands.

In the 488-PC2 Command Set, this is done by specifying a command string
and then calling the ieSend command. The ieSend command interprets the
mnemonics and converts them into GPIB bus bytes. In the following
example, CmdStr$ is set to the escape sequence used with some of ICS's
miniboxes to put them in their command mode. Consult the Command
Reference for the Send command mnemonics.

CmdStr$ = "UNL LISTEN 4 UNL LISTEN 4 UNL"
'device address = 4

L = Len (CmdStr$)
ioerr% = ieSend(DevAddr, CmdStr$, L)

4.2.10 Setting Timeouts

Due to the nature of the Windows environment, if a user sets the bus
handshake timeouts too short, another application could use up the allotted
time, thereby creating false errors. If the user sets the handshake timeouts
too long or to infinity, then a bus problem could hang the system up in the
GPIB application. The recommendation is to use a moderate timeout oif 1
to 3 seconds. Press the ESC key to exit the suspending loop.

4-8

4

4.2.11 Using Multiple 488-PC2 Cards

 Even though the 488.2 Driver supports multiple cards (and GPIB buses),
there is no hardware or software locking. Users should take care to not run
multiple applications that access the same 488-PC2 card at the same time.

4.2.12 Error Reporting and Handling

Visual Basic, C/C++ and Pascal programs normally call the 488.2 Driver
commands by equating them to an error variable. The 488.2 Driver returns
a zero in the error variable if there is no error. The recommended procedure
is for the programmer to call a standard routine to test the error variable and
to take some corrective action for a nonzero value. The example function
beeps and displays an error message.

ioerr% = ieEnter(DVM, Rdg$, Len(Rdg$))
ProcessError (ioerr%)

ProcessError is a function that has been added to the (General) Object in the
Visual Basic form. See the example Visual Basic programs.

Private Sub ProcessError(ErrCode%)
 Select Case ErrCode%
 Case 0
 txtError.Text = “”
 Case 1
 txtError.Text = “Device Timeout!”
 Case 2
 txtError.Text = “7210 Error!”
 Case 3
 txtError.Text = “Non-System Controller Error!”
 Case 4
 txtError.Text = “Error: Wrong parameter!”
 Case 5
 txtError.Text = “Ctrl-Brk pressed?”
 Case 6
 txtError.Text = “Can’t allocate DMA buffer”
 Case 7
 txtError.Text = “Can’t find RQS device”
 End Select
 If txtError.Text <> “” Then
 Beep
 Tdelay (0.5)
 End If
End Sub

4-9

4

4.3 IEEE 488.2 PROGRAMMING AND PROTOCOLS

The IEEE-488.2 Standard standardized the data transfer protocol between
the GPIB Controller and devices, added an expanded Status Reporting
Structure to devices, added a set of Common Commands that a device must
respond to and added Controller protocols for handling multiple devices.
These changes are described in paragraph A1.2 of the Appendix.

The expanded reporting structure in IEEE-488.2 devices supplies addi-
tional information about the device's status. This additional information is
contained in extra status registers whose conditions are summarized in bits
in the existing Status Register. The Common Commands set bits in enable
registers so a on condition of a bit will be reported in the Status Register and
can generate a SRQ. Review your device's manual for specific information
on its capabilities before programming the device.

The Common Command set simplifies the GPIB programmer's job since
you can expect any IEEE-488.2 compatible device to respond to the
Common Commands and to behave in a defined manner.

4.3.1 Confirming a Device's Presence

IEEE 488.2 compatible devices respond to the *IDN? query with a response
(up to 72 characters long) that identifies the device, its serial number and
revision. This query-response is a good way to verify that the device is
available to your system when starting a program.

A Windows example is:

CmdStr$ = "*IDN?"
L = Len$(CmdStr$)
ioerr% = ieOutput(DevAddr, CmdStr$, L)
Rdg$ = String(100, 32)
ioerr% = ieEnter(DevAddr, Rdg$, 100)

4.3.2 Finding Devices

The IEEE-488.2 FindLstn Protocol returns a list of all active devices on the
bus that can be addressed as listeners. FindLstn creates a list that then can
be used by the other protocols to perform serial polls or to reset all of the
devices on the bus.

4-10

4

In the 488-PC2 Command Set, the user defines a list of addresses to be
checked and FindLstn returns a list of found addresses.

FOR I = 0 to 30 'generates an AddrList
 AddrList(I) = (Card# * 100 + I)
NEXT I
numDevices = 31 'sets number of devices
ioerr% = ieFindLstn(AddrList, numDevices, ResultList)

 CAUTION
Presence of a device on the bus that handshakes all data
bytes such as a bus analyzer, bus extender, bus expanders
or a listen-only device will cause the ieFindLstn command
to find all possible device addresses. In this case, the user should
supply a list of the actual devices on the bus, not all possible
devices, before executing the ieAllSpoll, ieFindRQS or ieReset
commands.

 RECOMMENDATION
Set the timeout to ≤ 500 milliseconds when using the 488.2
protocols with large device lists to prevent unnecessary program
slowdowns.

The user should read the address list after executing the ieFindLstn
command to verify presence of all known devices and the absence of any
phantom device addresses. Refer to the Command Reference Section for
detailed information on the address list format and for directions on passing
the address list to the 488.2 Driver.

4.4 ADVANCED PROGRAMMING NOTES

This section covers advanced programming concepts that do not apply to

4-11

4

most GPIB bus applications.

4.4.1 Passing Control

Passing control from one controller to another controller, lets the second
controller take charge of all of the devices on the Bus. However, only the
system controller (the controller in charge at power turn-on) can control the
IFC and REN lines. Passing control is performed by addressing the new
controller as a talker and sending it the take control (TCT) command. The
following Basic example shows how to pass control to a controller at
address 22.

REM PASSES CONTROL TO ADDR 22
C$ = “UNL TALK 22 TCT” ‘COMMAND STRING
CALL ieSend (C$)

Compiled Basic and C language programs can use the iePassCtl command
to pass control to another controller. An example of its use for C is:

DevAddr = 22;
ioerr%=iePassCtl(DevAddr);

4.4.2 Direct Memory Access Data Transfer

Direct memory access (DMA) improves system performance in slow
computers by allowing external devices to directly transfer information to
or from the system memory without processing or program intervention.
Newer high-speed processors have eliminated the DMA speed advantage.
See Table 2-1.

With DMA transfers, any memory location can source data for the DMA
transfer and any read-write memory location can receive data. The 488-
PC2 data transfer can be programmed to proceed with or without DMA.
When you use DMA, the 488-PC2 provides a number of unique features.

1) The ability to run application programs and DMA simultaneously.

2) Selection of two DMA operating modes.

4-12

4

3) The ability to run IEEE-488 DMA and disk DMA simultaneously.

4) The ability to continuously transmit or receive data blocks of up to
64K bytes without processor overhead.

4.4.3 488-PC2 DMA Operations

The 488-PC2 DMA settings allows you to choose from three of the four
possible DMA channels. Bits 0 and 1 in the ieInit Setting parameter enable
DMA data transfer and select the DMA channel. Refer to Section 1.7.3 to
select a DMA channel.

The 488.2 Drivers support single byte and block transfer operating modes.
In single-byte-transfer mode, the DMA chip and the system processor share
control of the system bus. This allows both DMA and CPU processing to
continue simultaneously. In block-transfer mode, transfers are activated by
a request for service and continue until the number of bytes specified by the
programmer are transferred. In block-transfer mode, control of the system
bus is returned to the microprocessor only after all data is transferred.

Demand-transfer mode and Cascade mode are not supported by the 488-
PC2. The 488.2 Drivers disable the auto-initialization function and use only
the address register increment direction of the DMA controller because of
the nature of GPIB data transfer.

Bit 12 of the Setting parameter in the ieInit command determines the
handshake speed of the 488-PC2’s GPIB interface chip. Setting the bit to
“0” selects the slower IEEE 488 Bus handshake times for devices with open
collector drivers (Subset E1). Setting the bit to “1” shortens these times for
devices with tristate drivers (Subset E2) and speeds up the data transfer.

CAUTION
Using high speed data transfer with open collector
drivers will result in data errors.

Bit 14 of the ieInit command Setting parameter determines the DMA
operating mode. Setting the bit to “0” lets the DMA operate in single-byte-
transfer mode for low DMA rate and high CPU throughput. Setting the bit

4-13

4

to “1” lets the DMA operate in block-transfer mode for high DMA rate and
low CPU throughput.

Bit 15 of the ieInit command Setting parameter determines the sequence of
driver to handle a DMA. When bit 15 is set to “0”, the driver waits for the
completion of DMA before it goes further. When bit 15 is set to “1”, the
driver initializes the DMA and then goes away. It is also called BACK-
GROUND operation. When data transfer is related to other subsequent
commands, BACKGROUND operation cannot be used.

The 488-PC2’s DMA operation is quite transparent. Once you select the
DMA mode by calling the ieInit routine, all further data transfer proceeds
in this mode. However, when you select block-transfer mode, the DMA
channel 0 memory refresh may be blocked long enough to corrupt RAM
memory content. Do not use block-transfer mode unless you have confi-
dence that the data transfer will be completed within the time limits of
memory refresh.

When using background operation, the CPU does not monitor the data
transfer. The data string can be terminated by byte count only. You must
then handle the data format problem. It is safe to use DMA in single-byte-
transfer and non-background operation mode (the default condition). Use
of the other modes is not recommended.

Program examples showing how to use DMA data transfers are provided in
the language directories on the 488-PC2 DOS Driver Disk.

4.4.4 Using the PC as a Device

There are times when it is desirable to connect a PC to a GPIB Bus and yet
not be a bus controller. Examples of this are:

1. Using a PC as a stand alone data acquisition unit where it reports
to another computer. Typical applications are engineering work
stations and factory test stands.

2. Using the GPIB interface as a data transfer network between
computers. One computer is programmed as the bus controller, the
other ones as bus devices.

4-14

4

4.4.5 Device Program Considerations

The major program changes to using the 488-PC2 card as a device interface
are modifying the card’s initialization and then making provisions in the
program to input data or commands from the Bus controller. The ieInit
statement uses three parameters: IOPort%, MyAddr% and Setting%.

The IOPort% address is the same regardless of whether the card will be a
controller or a device.

The MyAddr% parameter should be set to the address assigned to the PC as
a Bus device. Bus system controllers normally use addresses 0 or 21 (HP
and ICS default to 21). Alternate or additional Bus controllers normally
take the next higher addresses i.e. 1 or 22. Bus devices are assigned unused
Bus addresses between 0 and 30, i.e., address 4.

The Setting% parameter needs to be changed to reflect the non-system
controller use of the 488-PC2 card. Bit 5 must be set on for operation in the
non-controller mode. Bit 12 may be set on for high speed handshakes or left
off for lower speed handshakes. If the Bus controller uses tristate drivers,
bit 12 should be set on.

An ieErrPtr command should be executed immediately after the ieInit
command. The ieErrPtr command assigns two variables for error number
and I/O byte count. An ieEOL command should be executed next to set up
the input and output terminators that will be used for data transfers with the
Bus Controller. You may also want to lengthen the 488-PC2’s default time-
out period to avoid timing out in case the Bus controller or some other
device slows down the Bus.

Sample Device programs are given in the language directories.

4.5 PROGRAM EXAMPLES

4.5.1 Visual Basic Examples

4-15

4

Three Microsoft Visual Basic 4.0 example programs are included in the
ICS-win directory. Two of the programs are PC2Cmd and PC2Cmd32.
Both command programs are simple interactive programs that give the user
control of any GPIB device and demonstrate a wide selection of GPIB
commands. The third program, VBdemo, is a simple test program that
operates two instruments. Visual Basic 4.0 allows both 16 and 32-bit
program examples. Visual Basic 5.0 and later only support 32-bit pro-
grams. Contact ICS is you have a problem running the examples on later
versions of Visual Basic.

Each program includes an executable version and the source files for the
Visual Basic forms as well as the included .bas files. This way you can try
the programs out and then examine their contents for example usage of a
particular command.

Figure 4-2 Main Form for PC2Cmd32

PC2Cmd32 is a 32-bit, Visual Basic 4.0 example using the 488-PC2
command set. PC2Cmd is a 16-bit, Visual Basic example using the 488-
PC2 command set. Both programs demonstrate how to use a large number

4-16

4

of the 488-PC2 commands in Visual Basic. The examples can also be
extrapolated into Quick Basic, Professional Basic or C.

Figure 4.2 shows the main form for the programs with all buttons enabled.
When the program starts, only the Initialize and Exit buttons are enabled.
When the user clicks Initialize, the GPIB REN line is asserted and IFC is
pulsed. If the GPIB hardware responds correctly, the remaining program
buttons are enabled. To change the address, enter a new value in the
Address box (in the upper lefthand corner) and click Set. The remaining
buttons invoke a unique command each time they are pressed.

To output a message to a device, the user clicks on the Output button to open
a text message box. Type the output message in the text message box and
click Okay to send the message. Figure 4-2 shows how the form appears
with '*idn?' in the Output Message box, just before clicking Okay. Click
Enter to read the response back from the device.

Figure 4-3 PC2Cmd32 488.2 Form

The 488.2 button causes 488.2 Form to appear as shown in Figure 4-3. The
488.2 Form has a selection of IEEE-488.2 commands. Each button in the
upper row of the form causes an IEEE-488.2 command to occur. Each

4-17

4

button in the lower row executes an IEEE-488.2 controller protocol.

The user can examine or modify the source files to make his own Visual
Basic project. The recommended method is to copy all of the files but the
project files (.vbp and .exe) files to another directory. Create a new Visual
Basic project and use Visual Basic to add the copied files to the new project.
There they can be edited, copied or later discarded.

The third Visual Basic example, VBdemo, operates an ICS Model 4861 to
generate analog voltages and inputs readings from a Hewlett-Packard
DVM. Figure 4-4 shows the equipment setup.

Intel type PC
with 488-PCI Card

4861 Power
Supply Programmer

HP 3478A DVM

488-
PC2

04

02

Vout

IEEE 488

Figure 4-4 VBdemo Program Setup

The program has only two simple forms. The Initialize button on the main
forms initializes the 488-PC2 card, the GPIB bus and the instruments. The
Run button is an eleven step loop that commands the 4861 to set and output
voltage and then enters a reading from the DVM. The program calculates
the differences between the commanded value and the reading. The results
are displayed on the main form. The addr form is used to change the device
address settings.

4.5.2 Visual C++ Example

A Microsoft Visual C++ 5 example program is included in the ICS_GPIB

4-18

4

directory. The program is called VC5_demo and includes an .exe file, the
mak and all of the source files. This lets the C programmer run the program
and later recompile it on his computer.

VX5_demo is a simple application that writes messages to and reads data
back from a device at address 4. It was built as a Microsoft Foundation Class
program following the instructions from "Inside Visual C++" by David J..
Kruglinski at Microsoft Press. Chapters 1 through 6 and 22 provide the
basic instructions for preparing Visual C++ programs. The user should not
spend too much time studying the source code files as the Foundation
Wizard added most of the code. The important parts are the GPIB calls and
the handling of the responses.

Check ICS's web site at http://www.icselect.com for a future application
note on building a Visual C++ programs.

5-1

5

5

DOS Language Reference
5.1 INTRODUCTION

This section explains how to install and use the 488.2 Driver routines with
DOS programming languages. This section builds on Section 4 which
covered GPIB Programming concepts by adding unique instructions for the
DOS applications.

5.2 INTERPRETIVE BASIC PROGRAMMING

This section describes how to use the 488.2 Drivers for Interpretive BASIC
programming with the 488-PC2 Card. The word BASIC when used in this
manual refers to Interpretive BASIC languages or programs. The 488.2
Driver supports Microsoft's GW BASIC, IBM's BASICA and certain
versions of HP's Vectra BASIC. Refer to section 2.3.3 for the supported
language versions.

5.2.1 BASIC Files and Programs

All of the 488.2 Driver BASIC Driver files and demo programs are located
in the BASIC directory on the 488-PC2 DOS Driver Disk. Table 4-1 lists
the files supplied to install and run the BASIC Drivers.

5.2.2 Installing the BASIC Drivers

Before programming in BASIC, you have to copy the BASIC Driver to your
work disk. Normally this is a directory on your hard disk. The 488-PC2
DOS Driver Disk contains an INSTALL program that copies the BASIC
drivers to your system for you.

5-2

5

TABLE 4-1 BASIC DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INS.COM 488-PC2 Card installation program.

PC2TEST.COM 488-PC2 Card test program.

INSTALL.BAT BASIC Driver and files installation routine.

DIRGEN.BAT Creates new directory during BASIC driver in-
stallation routine.

PC2-DRVR.BIN 488-PC2 BASIC Driver.

LOADER.BIN Routine that provides BASIC programs with
pointers to BASIC Driver commands.

ICSDECL.BAS Sample BASIC program header.

PC2BDEMO.BAS Demo program shows output and enter com-
mands.

PC23478A.BAS Demo program executes various commands from
a menu. Works with HP 3478A DVM or any bus
device.

TEST94.BAS Demo Program that sends strings to the serial and
GPIB ports.

To use INSTALL:

1. Be sure that you have made a backup copy of ICS's original disk as
described in paragraph 1.5 and are working from the copy.

2. Boot up your computer and type CD\ to get to the root directory. If
you are in DOSSHELL, select the root directory.

2. Insert the copy disk into your floppy disk drive.

3. To use INSTALL from drive A, type

> a:\ BASIC\INSTALL C:

5-3

5

where 'a' is the letter for your floppy drive.

4. The INSTALL routine will ask you for the name of the directory to
create for the 488 Drivers. Enter PC2 as the default directory name.

The following files are copied to your system:
PC2INS.COM
PC2TEST.COM
PC2-DRVR.BIN
LOADER.BIN
ICSDECL.BAS
README.DOC

5. At the end of the installation, the INSTALL Routine will ask if you
have a 488-PC2 card installed. If you answer y (yes), the program
will verify the PC2 Card switch settings.

6. Remove the PC2 Driver disk.

5.2.3 Programming in Interpreted BASIC

For BASIC programming, the driver is implemented as a series of assembly
language subroutine calls. Each subroutine performs a single GPIB
function such as outputting data, inputting data, conducting a serial poll, etc.
Although these routines are scattered throughout the device driver, their
starting addresses are all located in a short table at the beginning of the
driver. To access the subroutines, your program needs to include the setup
instructions from the ICSDECL.BAS file at the beginning of your program.

The set up instructions use the BLOAD statement to load the assembly
routine LOADER.BIN into interpretive BASIC's low memory space. This
routine, when called, will return the pointers to GPIB interface routines
located within the GPIB device driver. The next statement is a call to the
loaded assembly routine with the pointers to the interface functions. Refer
to your BASIC's User Manual for in-depth explanation of the BLOAD
command and its usage.

5-4

5

e.g.
10 CLEAR ,59747! : INIT1=59747! : BLOAD

"LOADER.BIN", INIT1
20 CALL INIT1 (IEINIT, IEOUTPUT, IEENTER,

IEABORT, IEEOL, IEDEVCLR, IELLO, IELOCAL,
IEPOLL, IEPOLLC, IEPOLLU, IEREMOTE, IESEND,
IESPOLL, IESTATUS, IETIMEOUT, IETRIGGER,
IEENTERA, IEOUTPUTA, IEDEVICE, IEERRPTR)

30 INIT2=INIT1+3
40 CALL INIT2(IEREV)

There are several ways to combine your application program with
ICSDECL.BAS:

— Write your program, starting at line 100 or higher and then merge
ICSDECL.BAS into it. When ready to merge type

> merge "ICSDECL"

You can save the combined program under your application program
name by typing:

> save "new program name"

— Or start with a copy of ICSDECL.BAS and add your application on to
it. To start type:

> load "ICSDECL"

To avoid overwriting ICSDECL.BAS, immediately execute a save to
the new file name by typing:

> save "new program name"

Enter your new program statements at line 100 or higher. When done save
as the file as the "new program file" name. The BASIC program should
have an Initialization section to initialize the 488-PC2 Card and the GPIB
bus and a Main section with the main body of code. Follow the instructions
in Section 3 and the examples include in the BASIC directory when writing
your program.

5-5

5

5.2.4 Using Interrupts in BASIC

The 488-PC2 has the capability to interrupt the PC's processor when certain
events happen. However, Microsoft BASIC in MS-DOS only provides for
interrupts from the keyboard, the light pen, the communication port, the
game port and on BASIC errors. To use the interrupt capability in BASIC,
the 488 Drivers replace Function Key 19 and 20 interrupts and add an error
code to inform BASIC that there is an interrupt from the GPIB interface.
When these interrupts are enabled, Function Keys 19 and 20 cannot be used
in their normal mode or the program will be confused. The three 488-PC2
interrupts are:

TABLE 5-2 PC2 BASIC INTERRUPTS

Type Interrupt

ERROR Error. 488-PC2 firmware detects an error. The error number
is ERR-128.

The error codes are:

Code Error
0 None
1 Handshake Timeout
2 Interface Error
3 Called IEABORT when the 488-PC2 is not the system

controller
4 Invalid command parameters.

F19 Timeout. The GPIB handshake is hung or
exceeds the timeout value.

F20 SRQ. The GPIB SRQ line is being pulled low by a
device.

The Setting% default value of 0 disables all three interrupts. To enable the
interrupts, you must set the appropriate Setting% bits to 1 when calling the
IEINIT routine.

 Setting Bit PC2 Interrupt
 9 SRQ
10 Timeout
11 Error

5-6

5

The BASIC syntax for the interrupt traps are:

ON KEY (20) GOTO 100 'Handle SRQ
ON KEY (19) GOTO 200 'Handle Timeout
ON ERROR GOTO 300 'Handle Error

Note - The interrupt handling of the 488-PC2's software is written for
BASICA Version 3.00. Since other BASIC versions may have different
traps for the Function Keys and different address of error number, the 488-
PC2 GPIB interrupt handling routines may not work for different versions
of BASIC. Check your BASIC manual for the trapping and error address
compatibility before using the interrupts

5-7

5

5.3 QUICK BASIC PROGRAMMING

This section describes how to use the 488.2 Driver libraries for Quick Basic
programming with the 488-PC2 Card. The same instructions also apply to
the other compiled Basic languages - Professional Basic and Visual Basic
for DOS.

5.3.1 Files and Programs

All of the Quick Basic files and Demo programs are located in the QB
directory on the 488 Driver Disk. Visual Basic for DOS files are located
in the VBDOS directory. Professional Basic files are located in the PDS7
directory. The directories include libraries which are linked to the user's
Basic program at the compile time. The libraries contain all of the IEEE-
488.2 commands and protocols.

The QB directory also contains two 'include' files which reference all of the
library file commands, global variables and default values. The QB
directory also includes three demo programs which show the user how to
control instruments, how to use interrupts and how to program the PC as a
device. Table 5-3 lists all of the files in the QB directory.

5.3.2 Installing the Quick Basic Libraries

Before programming in Quick Basic, you have to copy the Quick Basic
library files to your working directory. Normally this is a directory on your
hard disk. The 488-PC2 DOS Driver Disk contains an INSTALL program
that copies the necessary library files to your system for you.

To use INSTALL:

1. Make a backup copy of ICS's original disk as described in para-
graph 1.7 and you are working from the copy.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing Quick Basic directory, type CD
directoryname to get to the Quick Basic directory. If you are in
DOSSHELL, select the Quick Basic directory.

2. Insert the copy disk into your floppy disk drive.

5-8

5

3. To install the files from drive A type

>a:\QB\INSTALL C: where 'a' is the floppy disk drive.

4. The INSTALL routine will ask you for the name of the directory it
will create for the library files. Enter PC2QB as the default
directory name.

TABLE 5-3 QB DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INCL.BAS An include file that contains all of the 488 Driver
declarations.

PC2COM.BAS An include file that contains the Interface default
contents, settings and common variables.

PC2QBDOS.LIB 488 Driver library for making Quick Basic *.EXE
programs.

PC2QBDOS.QLB 488 Driver library for running programs in the
Quick Basic environment.

PC2QBDOS.OBJ 488 Drivers for creating other libraries.

PC2QBDEM.BAS* Demo program that shows output and enter com-
mands.

TST4891.BAS* Advanced version of PC2QBDEMO.

PC2QBINT.BAS Demo program that shows who to use SRQs to read
data.

EVENTTST.BAS* Demo program that shows how to write an interrupt
handler and test for SRQ, Error or Timeout inter-
rupts.

README.DOC QB Directory readme file.

* .EXE and .OBJ program versions are included on the disk.

5-9

5

}
}

The following files are copied to your system:

PC2QBDOS.LIB
PC2QBDOS.QLB Quick Basic library files.
PC2QBDOS.OBJ
PC2INCL.BAS Include file modules that contains
PC2COM.BAS all of the subroutines, and global vari-

ables shared between the main mod-
ule and the libraries.

README.DOC Documentation file.

5. If you want to use or run any of the same programs on your hard
disk, they can be copied at this time. To copy a file to your new
directory type

>copy a:\QB\filename c:\QB\PC2QB\

where PC2QB is your new directory name.

6. When done, remove the 488.2 Driver Disk.

5.3.3 Programming in Quick BASIC

The easiest way to program in Quick Basic is to use Microsoft's Quick Basic
editor. Start the editor by typing QB. DOSSHELL users double click on
the QB.EXE file. A typical Quick Basic program has the following
organization:

COMMENTS AND TITLE
SUBROUTINE DECLARATIONS
INCLUDE STATEMENTS
VARIABLE DEFINITIONS AND VALUES
PROGRAM STATEMENTS AND CALLS
SUBROUTINES (IF ANY)
END

The easiest way to do a Quick Basic program is to open or copy one of the
supplied demo programs (such as TST4891.BAS), rename it by doing a
'save-as' and then modify it. This gives you the structure of an existing
program and will takes care of the include files and declarations.

5-10

5

5.3.4 Declarations and Includes

Quick Basic uses declarations at the beginning of a program to reference
subroutines. A typical declaration is

DECLARE SUB ieEnter (DEVADDR%, INSTRING$)

There must be a separate declaration statement for each subroutine or
library command used in the program. To save you having to enter
individual declarations in each program, the 488 Driver provides two
include files which contains the declarations for all of the PC2 IEEE-488
commands and global variables. The Quick Basic commands for linking
these include files with your program are:

'$INCLUDE: 'PC2INCL.BAS'
'$INCLUDE: 'PC2COM.BAS'

The include statement starts with a single quote mark or REM and should
be the first statement in your program after declarations and variable
definitions. Because PC2COM.BAS defines global variables, it is best to
place declaration statements for other subroutines before the above include
statements.

The program initialization, body and subroutines depend upon the nature of
your program. Refer to the examples in the QB directory and to Section 4
for programming ideas. At the end of the program, use the ieClose
command to cleanup the GPIB interface and restore the host environment.

CALL ieClose ()
END

When you have finished writing your program, save it. This step is very
important as you could loose the program if the computer hangs up while
running the program and you have to reboot the computer.

To run the demo program from the command line type

> QB PC2QBDEM /L PC2QBDOS

To run your program, substitute your program's name for PC2QBDEM in
the above line

5-11

5

5.3.5 Parameter Passing

In Quick Basic, all parameters used in CALL statements may be passed as
a variable name or as a numeric or literal value. For example the commands

DVM% = 4
CALL ieTrigger (DVM%)

and
CALL ieTrigger (04)

are equivalent. Quick Basic variables and constants are defined in the
Command Reference Section.

5.3.6 Using Interrupts in Quick Basic

The 488.2 Drivers recognize three events in Quick Basic - Error; SRQ and
Timeout. The event meanings are listed in Table 5-4.

TABLE 5-4 QUICK BASIC INTERRUPTS

Type Interrupt

ERROR 488 Driver detected error. The error type is determined by
calling the STATUS command.

SRQ GPIB bus SRQ signal asserted by a device who needs
service.

TIMEOUT GPIB handshake is hung or a device response exceeded the
set timeout value.

To use the PC2 interrupt capability in Quick Basic, the user inserts the
following commands into his program:

ON UEVENT GOSUB <user subroutine>
UEVENT ON

The default SETTING% value of 100 HEX disables all interrupts. To
enable the interrupts, you must set the appropriate SETTING% bits to 1
before calling IEINIT. The bits are:

5-12

5

SETTING% BIT PC2 INTERRUPT
9 SRQ

10 Timeout
11 Error

Note - An SRQ interrupt also requires that hardware interrupts be enabled.
Refer to section 1.7.4 for enabling hardware interrupts.

The following example enables the timeout interrupt by setting bit 10 on.

SETTING% = 500 HEX 'Enables Timeout
CALL ieInit (IOPORT%, MYADDR%, SETTING%)

When an interrupt occurs in Quick Basic, the program will go to the service
routine specified in the ON UEVENT GOSUB () statement. If more than
one event is enabled, the user will have to test the Event Status and branch
to the correct service routine. A suggested interrupt routine is

'EVENT ROUTINE
CAUSE% = ieEventStat()
IF CAUSE% ≥ 8 THEN

PRINT 'UNEXPECTED EVENT STATUS'
STOP

ELSE
IF CAUSE% AND 4 THEN

GOSUB SERVICE_ERR
END IF
IF CAUSE% AND 2 THEN

GOSUB SERVICE_TIMEOUT
END IF
IF CAUSE% AND 1 THEN

GOSUB SERVICE_SRQ
END IF
END IF
RETURN

Figure 5-2 Quick Basic Interrupt Handling Routine

5-13

5

5.4 PASCAL PROGRAMMING

This section explains how to use the 488 Drivers for Pascal Language
programming with the 488-PC2 Card. Use the 488 Driver Borland libraries
with Borland Turbo Pascal versions 4.0. Use the 488 Driver Microsoft
libraries with Microsoft Pascal version 4.0. Both Pascal libraries provide
all of the IEEE 488.1 functions necessary to program a GPIB system in the
Pascal language.

5.4.1 Pascal Libraries and Programs

The Pascal libraries and demo programs are located in two directories on the
488 Driver Disk. One directory (BTPASCAL) supports Borland Turbo
Pascal programs and the other directory (MSPASCAL) supports Microsoft
Pascal programs. The BTPASCAL directory contains a library file, an
object file for IEEE functions, demo programs and a readme file. The
MSPASCAL directory contains a Pascal library file, an include file, demo
programs and a readme file. Tables 5-5 and 5-6 list the contents of each
directory.

5.4.2 Installing the Pascal Libraries

Before programming in Pascal, you have to copy the appropriate Pascal
library files to your working directory. Normally this is a directory on your
hard disk.

The Pascal directories on the 488 Driver Disk contain all of the Pascal
callable IEEE 488 library functions for application programs written in
Microsoft Pascal or Borland Turbo Pascal. Copy the complete contents of
the appropriate directory to the working directory on your hard disk. You
can use the demo programs as a starting point for your program and delete
them when done.

To INSTALL the libraries:

1. Make a backup copy of ICS's original disk as described in para-
graph 1.7 and you are working from the copy.

5-14

5

TABLE 5-5 BTPASCAL DIRECTORY CONTENTS

FILE DESCRIPTION

GPIB.TPU A library file that has all of the IEEE- 488.1 functions
required for Borland Turbo Pascal programs.

GPIB.PAS Source file for GPIB.TPU

PC2TPDRV.OBJ An object file that contains all of the IEEE-488.1 func-
tions for Turbo Pascal programs.

PC2_34.PAS Demo program that transfers data to and from a ICS
Model 4834 Serial Interface. Program also demonstrates
serial and parallel polling. Disk contains an .exe version.

PC2INT.PAS Uses SRQs to input data. Disk contains an .exe version.

PC2DEV.PAS Shows how to use the PC2 card as a bus device. Disk also
contains an .exe version.

DEMOLIB.TPU Library file used by the demo programs.

DEMOLIB.PAS Source file for DEMOLIB.TPU

README.DOC This file contains latest information about the Borland
libraries and commands.

PC2FUN.PAS Demo program
EX1_TB.PAS
EX4_TB.PAS Demo programs.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing Pascal or project directory, type
CD directoryname to get to the Pascal directory. If you are in
DOSSHELL, select the appropriate Pascal or project directory.

3. Insert the copy disk into your floppy disk drive.

4. Copy the desired library files onto your directory.
Directory BTPASCAL contains the Borland Turbo Pascal GPIB
library.
Directory MSPASCAL contains the Microsoft Pascal GPIB library
and an include file.

5-15

55.4.3 Programming In Pascal

Each Pascal language library contains routines that provide IEEE-488
language extensions for your Pascal language programs. Each routine
includes bus error checking. The routines also check parameter values to
insure that appropriate bus protocol is followed.

Each 488 Driver Pascal function specifies parameters that it must receive
from the program or parameters that it passes back to the program. These
parameters are shown in parentheses following the function name.

1. The order, number and type of variables passed to the functions must
be exactly as shown for each function.

2. Passed parameters can be variables or constants. However, the
passed parameter must be a pointer of a character string when string
I/O is involved.

TABLE 5-6 MSPASCAL DIRECTORY CONTENTS

FILE DESCRIPTION

MSPPC2.INC An include file that defines the IEEE 488.1 functions.

PC2MSPDV.LIB Library file that contains all of the GPIB functions for
Microsoft Pascal programs.

PC2_34.PAS Demo program that transfers data to and from a ICS
Model 4834 Serial Interface. Program also demonstrates
serial and parallel polling. Disk contains an .exe version.

PC2INT.PAS Uses SRQs to input data. Disk contains an .exe version.

PC2DEV.PAS Shows the PC2 card as a bus device. Disk also contains
an .exe file.

DEMOLIB.PAS A Pascal unit file used by the above demo programs.

DEMOLIB.INT The interface portion of the DEOMLIB

DEMOLIB.IMP The implementation portion of the DEMOLIB

README.DOC This file contains latest information about the Microsoft
libraries and commands.

5-16

5

Most of the Pascal commands return an integer that equals zero if there is
no error. Otherwise it equals the error number. The error number and
meanings are listed under ieErrPtr in the Command Reference section. To
use the commands without checking for errors just put them in the program
as stand alone functions.

i.e., ieOutput (DVM, SetupString);

To check for errors, create an integer and set it equal to the command.

i.e., ioerr : integer
ioerr := ieOutput (DVM, SetupString);

5.4.4 Turbo Pascal Programming

The 488 Driver functions for Turbo Pascal are contained in the file
PC2TPDVR.OBJ.

The file GPIB.TPU is a precompiled unit file of the source file GPIB.PAS.
Units are the basis of modular programming in Turbo Pascal. They are used
to create libraries that can be included in Turbo Pascal programs with out
having to include the source code.

The file GPIB.PAS has the definitions and declarations needed for all of the
GPIB functions. The user can copy the definitions into the program or use
the statement 'uses GPIB' to include the definitions in the program. The
definitions will be included as if they were on a single line. The functions
contained in the GPIB.TPU file are indicated by the P Compatibility column
in Table 3-1.

To use the 488.2 Driver functions include the statement 'uses GPIB' at the
beginning of your Turbo Pascal program. Files GPIB.TPU and
PC2TPDRV.OBJ must be in the same directory as your Turbo Pascal
program. Develop the program with the desired 488 Driver functions and
run the program.

5-17

5

5.4.5 Microsoft Pascal Programming

The 488 Driver library procedures and functions for Microsoft Pascal
(PC2MSPDV.LIB) can be thought of as an extension to the Pascal libraries
that Microsoft offered. The extension consists of those procedures and
functions indicated by the P Compatibility column in Table 3-1. These
functions and procedures are fully compatible with the IEEE 488.1 Stan-
dard.

Using the 488 Driver procedures and functions requires the following steps:

1. Define the 488 Driver functions and procedures that will be called
in the program by including the following include statement in your
program. Type the include statement exactly as it is shown.

($INCLUDE:'MSPPC2.INC)

2. Develop the program with the 488 Driver functions that you need.

3 Compile the source code with the Microsoft Pascal compiler.

4. Link the OBJ code with the 488 Driver library PC2MSPDV.LIB
and any other necessary libraries.

5. Execute the program.

5-18

5

5.5 C/C++ LANGUAGE PROGRAMMING

This section explains how to use the 488 Drivers for C/C++ Language
programming with the 488-PC2 Card. Use the 488 Driver Microsoft
libraries with Microsoft Quick C version 2.5, Microsoft C versions 5.0 and
6.0, Microsoft C/C++ version 7.0 and Visual C++ programs. Use the 488
Driver Borland libraries with Borland Turbo C++ and Borland C/C++
versions 2.0, 3.0 and 4.0 language programs. Refer to paragraph 2.3 for a
complete list of the supported C languages and versions.

5.5.1 C Library Files and Demo Programs

The C libraries and demo programs are located in two directories on the 488
Driver Disk. One directory (MSC_CPP) supports Microsoft C programs
and the other directory (BORC_CCP) supports Borland C programs. Both
directories contain C libraries for various memory sizes, an include files and
some demo programs. The include file PC2INC.H references the Driver
commands, sets global variables, and establishes the default values. Tables
5-7 and 5-8 list the contents of each directory.

5.5.2 Installing the C Libraries

Before programming in C, you have to copy the appropriate C library files
to your working directory. Normally this is a directory on your hard disk.

The C directories on the 488 Driver Disk contain all of the C callable 488
Driver library functions for application programs written in Microsoft C or
Borland C. All library files have the .LIB extension. The first letter of the
file name specifies the memory model size. The next three letters specify
Microsoft or Borland compliers.

Prefix Size Code Company
S Small MSC Microsoft
M Medium TBC Borland
L Large

To INSTALL the libraries:

1. Make a backup copy of ICS's original disk as described in para-
graph 1.7 and you are working from the copy.

5-19

5

TABLE 5-7 MSC_CPP DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INC.H A header file for accessing the commands in the C
libraries. Required for calling 488 Driver functions.

SMSCPC2.LIB Library for small memory model applications.

MMSCPC2.LIB Library for medium model applications.

LMSCPC2.LIB Library for large memory model applications.

PC2CINT.C This is a demo program for MS C ver 7.0 that uses a 488-
PC2 card to send commands to an ICS 4891 Power Supply
Programmer to generate DC voltages and uses an HP
3478 DVM to read the voltages. Shows use of interrupts
to read in data from the DVM. Disk also contains an .EXE
file.

PC2_34.C This is a demo program for MS C ver 5.1 that uses as 488-
PC2 Card to write and read back test strings from ICS
4834 GPIB-Serial Interface. Shows how to use secondary
addresses. Disk also contains .EXE file.

PC2DEV.C This is a demo program for MS C ver 5.1 that shows how
to use the 488-PC2 card as a device. Disk also contains
.EXE file.

README.DOC This file contains latest information about the Microsoft
libraries and commands.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing C or project directory, type CD
directoryname to get to the C directory. If you are in DOSSHELL,
select the appropriate C or project directory.

3.. Insert the copy disk into your floppy disk drive.

4. Copy the desired library files onto your directory.
Directory MSC_CPP contains the Microsoft C libraries.
Directory BORC_CPP contains the Borland C libraries.

5-20

5

TABLE 5-8 BORC_CPP DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INC.H A header file for accessing the commands in the C
libraries. Required for calling 488 Driver functions.

STBCPC2.LIB Library for small memory model applications.

MTBCPC2.LIB Library for medium memory model applications.

LTBCPC2.LIB Library for large memory model applications.

PC2CINT.C This is a demo program that sends commands to an ICS
4891 Power Supply Programmer to generate DC voltages
and uses an HP 3478 DVM to read the voltages. Shows
use of interrupts to read in data from the DVM. Disk also
contains an .EXE file.

PC2_34.C This is a demo program for Borland C ver 2.0 that writes
and reads back test strings from ICS 4834 GPIB-Serial
Interface. Shows how to use secondary addresses. Disk
also contains .EXE file.

PC2_DEV.C This is a demo program for Borland C ver 2.0 that shows
now to use the 488-PC2 card as a device. Disk also
contains an .EXE file.

BOR_CPP A sub-directory containing sample C++ programs and
files.

README.DOC This file contains latest information about the Borland
libraries and commands.

5.5.3 Programming in C/C++

Each 488 Driver C function specifies parameters that it must receive from
the program or parameters that it passes back to the program. These
parameters are shown in parentheses following the function name. The
order, number, and type of variables passed to the functions must be exactly
the same as the syntax shown for each functions.

Most of the C commands return an integer that equals zero if there is no
error. Otherwise it equals the error number. The error number and
meanings are listed under ieErrPtr in the Command Reference section. To
use the commands without checking for errors just put them in the program
as stand alone functions.

5-21

5

ieOutput (DVM, SetupString);

To check for errors, create an integer and set it equal to the command.

int CmdErr;
CmdErr = ieOutput (DVM, SetupString);

5.5.4 Using the 488.2 Driver Library Functions

The 488 Driver Libraries for Microsoft C/C++ (SMSCPC2.LIB,
MMSCPC2.LIB, LMSCPC2.LIB) can be thought of as an extension to the
SLIBC.LIB, EM.LIB and LIBH.LIB libraries that Microsoft Corp. offers.

The 488 Driver Libraries for Borland C/C++ (STBCPC2.LIB,
MTBCPC2.LIB, LTBCPC2.LIB) can be thought of as an extension to the
libraries that Borland International offers.

Each C library contains all of the functions listed in Table 3-1. These
functions allow the PC to operate as an IEEE 488.2 Bus Controller with both
interfaces or as a GPIB device when used with ICS's 488-PC2 card. Both
C and C++ languages use the same C library. The PC2INC.H header file
will automatically handle the interface for the two languages.

Using 488 Driver library functions requires the following steps.

1. Include PC2INC.H in all programs which use PC2 Driver.

2. Develop the program with the 488 Driver functions that you need.

3 Compile the source code with the appropriate memory model, e.g.
for small Model C programs use the following commands:

Microsoft C: cl /c /AS prog.c
Borland C: bcc - c - ms prog.c

4. Link the OBJ code with the necessary libraries. The 488 Driver
functions are stored in the following libraries according to different
memory models.

5-22

5

Microsoft C:

SMSCPC2.LIB 488 Driver library for S model
MMSCPC2.LIB 488 Driver library for M model
LMSCPIC2.LIB 488 Driver library for L model

e.g.: Link prog SMSCPC2.LIB for small model

Borland C:

STBCPC2.LIB 488 Driver library for S model
MTBCPC2.LIB488 Driver library for M model
LTBCPC2.LIB 488 Driver library for L model

5. Prepare and Execute the program.

Note: The PC2INC.H header file contains ANSI function proto-
types for the library functions. If the header file is included then the
compiler will detect most parameter errors.

Compile and run the program.

5.5.5 Using Interrupts in C/C++

The 488.2 Driver adds the capability of handling of SRQ, time out and error
conditions. With these functions, the C programmer may design his own
handler and install or remove it seamlessly. When installed, the user
defined handler will become part of the PC2 driver interrupt processing
sequence and will be activated when an abnormal condition occurs. To use
interrupts, do the following:

1) Design your own handler as a separate C function which has type
far, return void and takes no argument. Follow all recommended
notes of the ieServiceEnable function in the Command Reference
section.

2) In the main function, do all necessary initialization for your
program.

5-23

5

3) Call ieInit with the selected event and IRQ channel. Note - an SRQ
interrupt also requires that the hardware interrupts be enabled.
Refer to section 1.7.4 for setting hardware interrupts.

4) Call ieServiceEnable to install your handler.

5) Start your main processing section. From this point, your handler
will be triggered by the intended event until you explicitly call
ieServiceDisable or ieClose.

Example interrupt source code is provided in both C directories.

5.5.6 Using the PC as a Device

There are times when it is desirable to connect a PC to a GPIB Bus and yet
not be a bus controller. The major changes to use the 488-PC2 card as a
device interface require modifying the card's initialization and input/output
string terminators. The initialization function, ieInit(), has three param-
eters: 'ioport', 'myaddr', and 'setting'. The ioport address is the same
regardless of whether the card will be a controller or device. The only
reason that the ioport address would change is if the address switch setting
is changed.

The myaddr parameter is the address assigned to the PC as a Bus device.
Bus controllers normally use addresses 0 or 21 (HP preference). Alternate
Bus controllers normally take the next higher addresses, i.e. 1 or 22. Bus
devices are assigned unused Bus address 1 to 20 and 22 to 30. Address 31
is an invalid address and cannot be used.

The setting parameter must be changed to reflect the non-system controller
use of the 488-PC2 card. Bit 5 must be set to '1' for operation in the device
mode. Bit 12 may be set on for high speed handshakes or left off for lower
speed handshakes. If the Bus controller uses tristate drivers, bit 12 should
be set on.

The 'outeol' and 'ineol' parameters in the ieEol() function that set the output
string and the input string terminators need to match the Bus Controller's
format for output and input string terminators. They must be altered to
properly handle the ieEol parameter setting of string terminators of the
device. That is 'outeol' must match the bus controller's expected input string
terminator. 'inEol' must be set to match the bus controller's output string
terminators.

5-24

5

The demo program PC2dev.C makes 488-PC2 card function as a device that
sends out and receives data from the bus controller. As a device, the 488-
PC2 will not be able to issue 'REN', 'IFC' or 'ATN.' The program polls the
address status register of the 7210 controller IC on the 488-PC2 card to see
whether MLA, my listen address or MTA, my talk address has been sent to
the IEEE bus by the bus controller, and then the PC does a data transfer.

The demo program uses a FIFO ring buffer data structure to do the data
transfer. The head of the ring buffer points to the last string that has been
read from the buffer and output to the bus controller. The tail of the ring
buffer points to the string that the PC user has most recently entered from
the keyboard. The user can press the RETURN key to enter a string at any
time after the device address of the 488-PC2 card has been entered. If the
488-PC2 receives its talk address and the ring buffer is empty, the program
will prompt the user to enter a string and then send it to the bus. If return
is pressed and a string is entered while the 488-PC2 is not addressed as a
talker, it will output an SRQ to the bus and respond to a serial poll with a
hex 41 character.

CAUTION

The 488-PC2 can be switched from listener to talker
directly, but it cannot be switched from a talker to
listener. The bus controller has to send a UNT message
to the 488-PC2 before it makes the 488-PC2 a listener.

An alternate approach to data transfer is using the address status change
interrupt instead of polling the 7210's address status register. Use the ieInit
function to select a desired IRQ level, and enable the ADSC interrupt by
writing a 1 to bit position 0 of 7210 Interrupt Mask 2 Register. An interrupt
service routine needs to be created that will either do data input upon
sensing its listen address or a data output upon sensing its talk address. See
paragraph 5.5.5.

5.5.7 C++ Demo Program

The BOR_CPP directory contains a C++ demo program labeled PC2_34.cpp.
This program demonstrates how to control and pass data to a GPIB device
which is an ICS Model 4834 GPIB to Serial Interface. In the program, the
4834 configuration is set to 'T1' which puts the 4834 in local loopback test
mode. The program sends out data strings to the 4834 and then reads the
data back from the same serial channel.

6-1

6

6

Command Reference
6.1 INTRODUCTION

This section describes the 488.2 Driver commands and functions. The
description for each command or function includes the command and
function syntax, parameter types, responses where appropriate, and usage
examples for Pascal, Interpretive BASIC, Quick Basic, C and C++. Bus
activity is described where appropriate to explain the command.

The commands are organized on individual pages and labeled in mixed
capital and lower case letters for legibility. The command syntax for each
language is also shown in mixed leters except for Interpretive BASIC which
is shown in all capitals. When Interpetitive BASIC and Quick Basic
(Compiled Basic) have the same syntax, they are shown together on the
same line and labeled BASIC/QB

6.2 COMMAND CONVENTIONS

Table 6-1 lists the common conventions used in the 488.2 Driver commands.
Constants are shown all upper case.

6.3 CONSTANTS AND DEFAULT VALUES

Some of the command parameters remain constant throughout most programs.
To simplify the users programming tasks these constants have been placed
in include files in each language's directory. Table 6-2 lists the constants and
their default settings for each language.

6-2

7
6

TABLE 6-1 COMMON COMMAND PARAMETERS

Parameter Description

< > a required parameter.

[] an optional parameter.

DevAddr GPIB device address which may be one of three forms:
pp = primary addresses 0 to 30 for Interpretive

BASIC and Pascal
pp [ss] = primary addresses 0 to 30 and optional

secondary address of 00 to 31 for Quick
Basic, C and C++. This form does not
support secondary addresses for primary
address 0

CardID [pp [ss]] = CardID value of 7 to 4, primary
address of 00 to 30, and optional secondary
address of 00 to 31 for MS Windows.

PC2ADDR type definition for PC2 DLL device address. The
format is CardID [pp [ss]].

CardID an integer which identifies the logical 488-PC2 card.

PrimAddr an integer which represents primary address field (pp).

AddrList One dimensional array whose entries are device
addresses and is terminated by END_ADDR. Format
is pp [ss].

PrimList an address list composed of only primary addresses.

END_ADDR a constant (3131) used to terminate an address list.

n a numeric integer.

string a series of ASCII characters.

data a series of binary bytes or ASCII characters.

<nl> a required command terminator sequence. For IEEE-
488.2 commands, <nl> is a line feed (LF), EOI asserted
on the last character or a combination of both events.

6-3

6

TABLE 6-2 DEFAULT CONSTANT VALUES

Language BASIC Quick Basic C/C++

File name ICSDECL.BAS PC2COM.BAS PC2COM.H

488.2 DRIVER Constants

CardID - - -

MyAddr% 21 21 21

NoAddr% -1 -1 -1

END_ADDR% — 3131 3131

IOPort% &H2E1 &H2E1 0x02E1

Setting% &H0 &H100 0x1100

Time% 10000 10000 10000

OutEOL% 0 0 0

OutEOLStr$ CHR$10 CHR$(10) CHR$(10)

InEOL% 0 0 0

InEOSByte% 10 10 10

SRQServ — 1 1

TimeOutServ — 2 2

ErrorServ — 4 4

TC_ASYNC — 0 0

TC_SYNC — 1 1

TC_END — 2 2

6.4 GPIB COMMAND TERMINATORS

IEEE-488.2 commands can be terminated by a line feed (LF), EOI asserted
on the last character or a combination of both events. Older IEEE-488.1
devices may recognize a carriage return (CR) as the command terminator.
The 488.2 Drivers default output terminator is line feed (LF) with EOI

6-4

7
6

TABLE 6-2 DEFAULT CONSTANT VALUES (CONT.)

BASIC Quick Basic C/C++

Other Constants

LF 10

CR 13

YKEY 89

NKEY 78

ESCKEY 27

RTNKEY 13

Strings

TALKS "UNL UNT
MLA TALK"

LISTENS "UNL UNT
MTA LISTEN"

UNTS "UNT"

UNLS "UNL"

SEC0DATAS "SEC 0 DATA"

SEC0S "SEC 0"

SPACE80$ STRING$(80)

asserted on the last byte. The output terminator is changed by changing the
'OutEOLStr' parameter in the ieEol command.

Input GPIB messages can be terminated by a carriage return (CR), line feed
(LF), by EOI asserted on the last character or by a combination of all two or
three events. An IEEE 488.2 device always appends the line feed (LF)
character to an ASCII message and asserts EOI on the last byte of the
message. The 488.2 Drivers default input termination is line feed (LF) and
/or EOI asserted. Pure binary data with EOI asserted can be terminated by
a byte count with the ieEnterB command. The input terminator is changed
by changing the 'InEOSByte' parameter in the ieEOL command.

6-5

6

6.5 RETURN VALUES AND ERROR CODES

The C/C++, Visual Basic and Pascal language commands or functions
return a value which contains the function result and/or an error code. The
error code is zero if there were no errors, non-zero otherwise. The error
codes and definitions are listed below in Table 6-3. See paragraph 4.2.12 for
how to handle command errors.

Interpetive BASIC and Quick Basic commands and functions that do not
directly return a value can have their error codes read by calling the ieStatus
command. The ieStatus command returns the error code for the last called
command. Refer to the ieStatus page for the correct syntacx and an example
of how to use the command with the Basic languages.

TABLE 6-3 COMMAND ERROR CODES

Code Error Description

0 none
1 Handshake Timeout
2 Interface Error
3 Called a controller related function when the

PC2 is not the system controller
4 Invalid passed parameter(s)
5 Keyboard break key used to quit handshake

timeout
6 Failed to allocate DMA buffer
7 Could not find a device requesting service
8 No acceptor present on the bus
9 Incompatible hardware. Could not find 488-

PC2 Revision 1 Card or 4818 Module.
10-255 Reserved

6-6

7
6

6.6 COMMAND REFERENCE

The remainder of this section contains a detailed description of each 488.2
Driver command or function. The commands and functions are listed
alphabetically. Immediately following the command references are three
Time Utility functions that the user will find convenient for creating time
related programs.

Command or function examples are shown for Interpetive BASIC, Quick
Basic (Compiled Basic) and C languages where appropriate. The command
syntax for each language is also shown in mixed leters except for Interpretive
BASIC which is shown in all capitals. When Interpetitive BASIC and Quick
Basic (Compiled Basic) have the same syntax, they are shown together on
the same line and labeled BASIC/QB

Pascal programmers may use the C example as a guide and should refer to
the example programs in the Pascal language directory.

6-7

6

ieAbort
Purpose:

This command clears all device interfaces and causes the Interface to take
control of the bus.

Syntax:

BASIC/QB - CALL IEABORT

Pascal - ieAbort: integer;

C, C++ - int ieAbort()

Win DLL - ieAbort(PC2ADDR CardID)

Return Value:

Error Code for Pascal, C/C++ and Win DLL commands

Bus Activity:

IFC is pulsed for a minimum of 100 microseconds
REN is set
ATN is cleared

Comments:

ieAbort can only be called when in system controller mode. An error will
occur otherwise. Refer to ieInit for the system controller setting.

Examples:

For BASIC/QB CALL IEABORT

For C/C++ if(ieAbort()==ERR_NO4882) {...};

For Win DLL ieAbort(7)

6-8

7
6

ieAllSpoll
Purpose:

This command performs 488.2 Serial Poll All Devices protocol. Polls the
devices in the AddrList and returns the responses in a separate list.

Syntax:

Quick Basic - CALL ieAllSpoll (ADDRLIST%(), RESPLIST%())

C, C++ - void ieAllSpoll(int far *AddrList, int far *RespList)

Win DLL - ieAllSPoll(int CardID, PC2ADDR* DevList,
int numDevices, WORD* RespList);

Return Value:

Error Code for Win DLL commands

Comments:

This command causes the 488-PC2 to serial poll all devices listed in the
AddrList. Responses are placed in a one dimensional integer array
RespList on a one-to-one match with the AddrList. RespList length must
be greater than or equal to AddrList. Response values are 0 to 255.

If the device fails to respond to the serial poll, the response value is a 16 bit
negative value with bit 15 true. Bits 14-8 contain the error code and bits 7-
0 contain the devices response if any.

Examples:

For Quick Basic
DIM ADDRLIST% (3)
DIM RESPLIST% (2)
ADDRLIST% (1) = 04
ADDRLIST%(2) = 0501
ADDRLIST%(3) = 3131 'marks end of list
CALL ieAllSpoll (ADDRLIST%(), RESPLIST%())

6-9

6

 continued ieAllSpoll
For C/C++

int AddrList[] = {4,506,3131};
int RespList[3];
ieAllSpoll(AddrList, RespList);

6-10

7
6

ieClose
Purpose:

This command cleans up the 488.2 Drivers and restores system environment.

Syntax:

Quick Basic - CALL ieClose()

C, C++ - void ieClose(void);

Return Value:

none

Bus Activity:

None

Comments:

ieClose should be called as the last command in the program and before
calling ieInit a second time. If ieInit is called more than once in a program
then ieClose must be used before the second and subsequent ieInits to clean
up the prior ieInit.

Examples:

For Quick Basic
CALL ieClose()

For C/C++
ieClose();

6-11

6

ieDevClr
Purpose:

Returns a bus device's internal logic to a known device-dependent state. It
can be sent to all addressed listeners or to a specific device.

Syntax:

BASIC/QB - CALL IEDEVCLR (DEVADDR%)

Pascal - ieDevClr (DevAddr: integer) : integer;

C, C++ - int ieDevClr (int DevAddr)

Win DLL - ieDevClr (PC2ADDR DevAddr)

Return Value:

Error code for Pascal,C/C++ and Win DLL commands.

Comments:

If PrimAddr is 0 to 30, then the driver sends a Selective Device Clear
command to the device. If DevAddr is -1 (NoAddr) or 31, then the driver
outputs a universal Device Clear command to the bus.

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
CALL IEDEVCLR (DEVADDR%) 'clears device 4

CALL IEDEVCLR (NOADDR%) 'outputs DCL to the bus

For C/C++
ieDevClr (4); /* clears device 4 */

ieDevClr (NoAddr); /* outputs DCL to the bus */

6-12

7
6

ieDevice
Purpose:

This command maps the PC printer or COM port to the GPIB port so that
data directed to the printer or com port is outputted to a device on the bus.

Syntax:

BASIC/QB -CALL IEDEVICE (DEVADDR%, DOSPORT%)

Pascal - ieDevice (DevAddr, DOSPort:integer) : integer ;

C, C++ - int ieDevice (int DevAddr, int DOSPort)

Return Value:

Error code for Pascal and C/C++ commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the 488.2 Driver will address the device to listen
before outputting data. If PrimAddr < 0 or > 30, the replacement of LPT
n or COM is disabled.

DOSPort Specifies the PC printer or COM port that is replaced according
to the following table.

DOSPort Value Replaced PC Port
1 LPT1
2 LPT2
3 LPT3
4 COM1
5 COM2

Warning:

Using this command to replace COM1 or COM2 could hang the system if
another application attempts to initialize the replaced COM port.

6-13

6

ieEnter
Purpose:

This command reads device data. Reading continues until one of the
following events occurs:

• EOI line is sensed
• EOS character is sensed if enabled
• the maximum number of characters is received

Syntax:

BASIC /QB - CALL IEENTER (DEVADDR%, INSTRING$)

Pascal - ieEnter (DevAddr: integer; var InString: string):
integer;

C, C++ - int ieEnter (int DevAddr, char *const InStringBuf,
int MaxLen)

Win DLL - ieEnter (PC2ADDR DevAddr, LPSTR InString,
int MaxLen)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the specified device is addressed as a talker and
the data is entered into InString from the device. Otherwise, data is entered
from the current addressed talker and the EOL used will be for the PC2's own
address. MaxLen is an integer used by C language commands to specify
the maximum number of characters that may be inputted; 0 ≤ MaxLen ≤
65535. Always set MaxLen to one more than the number of characters to
be input. Caution - use the ieEnterB command instead of the ieEnter
command to input binary data.

Examples:

For BASIC/Quick Basic
DEVADDR% = 04
INSTRING$ = SPACE$ (80)
CALL IEENTER (DEVADDR%, INSTRING$)

6-14

7
6

ieEnter continued
For C/C++

char InString [1024];
ieEnter (4, Instring, 1024);

6-15

6

ieEnterA
Purpose:

This command enters data from the device into an array. Reading continues
until the message terminator is sensed or the maximum number of characters
is received.

Syntax:

BASIC - CALL IEENTERA(DEVADDR%, DATASEG%,
MAXLEN%)

Pascal - ieEnterA (DevAddr, DataSeg: integer): integer;

Return Value:

Error code for Pascal commands.

Comments:

If 0 ≤ DevAddr ≤ 30, then the specified device is addressed as a talker and
data is inputted from the device. Otherwise data is inputted from the current
addressed talker. The data is put into a memory area segment specified
DATASEG% with the starting address offset = 0 MaxLen specifies the
maximum number of characters that may be inputted; 0 ≤ MaxLen ≤ 65535.

Examples:

For BASIC
DEVADDR%= 04
DATASEG% = &H8000
MAXLEN% = 100
CALL IEENTERB (DEVADDR%, DATASEG$,
MAXLEN%)
'enters up to 100 characters in into memory segment

.

6-16

7
6

ieEnterB
Purpose:

This command enters binary or ASCII data from the device. Reading
continues until the EOI line is sensed or the maximum number of characters
is received.

Syntax:

Quick Basic - CALL ieEnterB (DEVADDR%, INSTRING$)

C, C++ - int ieEnterB (int DevAddr, char* const InStringBuf,
unsigned int Maxlen)

Win DLL - ieEnterB (PC2ADDR DevAddr, LPSTR
InStringBuf, int Maxlen)

Return Value:

Error code for C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30, then the specified device is addressed as a talker and
data is inputted from the device. Otherwise data is inputted from the current
addressed talker. InString is the string variable that contains the received
data. MaxLen specifies the maximum number of characters that may be
inputted; 0 ≤ MaxLen ≤ 65535. Use ieEnterB to input binary data from
devices such as waveform recorders and digital oscilloscopes.

6-17

6

ieEnterB continued
Examples:

The following examples will terminate when EOI is sensed or when the
device has outputted 100 characters. MaxLen should not be set larger that
the expected character count if the device does not assert EOI on the last
character.

For Quick Basic
DEVADDR%= 04
INSTRING$ = SPACE80$ 'see Table 6-2
MAXLEN% = 100
CALL IEENTERB (DEVADDR%, INSTRING$,
MAXLEN%)
'enters up to 100 characters in INSTRING$

For C/C++
ieEnterB (4, Instring, 100);
/* enters up to 100 characters in InString */

6-18

7
6

ieEol
Purpose:

This command sets the input and output data terminators for the specified
device. Default values for ieEnter and ieOutput are LF with EOI asserted
on the output and sensed on the input. The terminators for all devices remain
at the default value if this command is not called for those particular devices.

Syntax:

BASIC/QB - CALL IEEOL (DEVADDR%, OUTEOL%,
OUTEOLSTR$, INEOL%, INEOSBYTE%)

Pascal - ieEol (DevAddr, OutEOL: integer; var OutEOLStr:
string; InEOL, InEOSByte: integer): integer;

C, C++ - int ieEol (int DevAddr, int OutEOL,
const char *OutEOLStr, int InEOL, int InEOSByte)

Win DLL - ieEOL (PC2ADDR DevAddr, int OutEOL,
const char *OutEOLStr, int OutEOLlen, int InEOL,
int InEOSByte)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the terminators and specifiers are stored for the
specified device.

OutEOL selects the terminator that is appended to the output string.
Choices are:

OutEOL = 0 for both OutEOLStr and EOI (default)
OutEOL = 1 for EOI only
OutEOL = 2 for OutEOLStr only

OutEOLStr specifies the output terminator string. Maximum string length
is 8 characters. Default is "\n" (line feed)

6-19

6

ieEol continued
InEOL specifies the condition that terminates the input string.

InEOL = 0 for terminate input when EOS character received, EOI
sensed or input string full. (default)

InEOL = 1 for terminate input when EOI sensed or input string full.

InEOSByte specifies the byte code that terminates the input. The default
is decimal 10 (Line feed).

Notes:

When data transfers to or from a secondary addressed device, the terminators
of its primary address are used.

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
'OUTEOLSTR$ = CHAR$ (13) + CHAR$ (10)
CALL IEEOL (DEVADDR%, OUTEOL%,
OUTEOLSTR$, INEOL%, INEOSBYTE%)
'changes EOL string for device 4 to CR LF.
'keeps default EOS Byte

For C/C++
ieEol (4, 0, "\15\n", 0, 10);
/* changes EOL string for device 4 to CR LF
* keeps default EOS byte
*/

6-20

7
6

ieErrPtr
Purpose:

This command assigns variables for error number and byte transfer count.
This function must be executed before calling any other command except
ieInit or it will not work. This command is not required in Pascal and C/C++
language programs as the commands return an error value when called.

Syntax:

BASIC/QB - CALL IEERRPTR (IOERR%, IOBYTES%)

Pascal - n/a

C, C++ - n/a

Comments:

IOERR is an integer which contains the error number of the last called
command. IOBYTES is an integer that contains the number of bytes
entered or outputted by the last called command.

The assigned IOERR and IOBYTES integer variables can be read at any
time by the ieStatus function. The error codes are listed in Table 6-3.

Examples:

For BASIC/Quick Basic
CALL IEERRPTR (IOERR%, IOBYTES%)

For C/C++
/* every C command returns an error value */
int CmdErr;
CmdErr = ieAny Command();
/* error = 0 if the command was successful */

6-21

6

ieEventEnable
Purpose:

This function enables a particular event to send a notification to a particular
window application.

Syntax:

Win DLL - ieEventEnable(PC2ADDR CardID, HWND
hWnd, WORD wEvMask);

Return Value:

Error code for Win DLL commands.

Comments:

 CardID specifies the card which is to generate a hardware interrupt.
EvMask is a combination of the flags listed below. The user must select and
enable a 488-PC2 IRQ line for this function to work.

 Flag Window Msg Meaning
PC2EV_SRQ1 WM-PC2_SRQ1 SRQ detected
PC2EV_CO WM-PC2_CO Command out request
PC2EV_LOKC WM-PC2_LOKC Lockout status change
PC2EV_REMC WM-PC2_REMC Remote status change
PC2EV_ADSC WM-PC2_ADSC Address status change
PC2EV_CPT WM-PC2_CPT Undefined command or

sec address received
PC2EV_APT WM-PC2_APT Sec address detected
PC2EV_DET WM-PC2_DET Device trigger detected
PC2EV_END WM-PC2_END Data transfer complete

EOI or EOS sensed
PC2EV_DEC WM-PC2_DEC Device clear detected
PC2EV_ERR WM-PC2_ERR GPIB Bus Error
PC2EV_DO WM-PC2_DO Data byte out
PC2EV_DI WM-PC2_DI Data byte in

For additional information about the event flags, refer to NEC 7210 data
book.

6-22

7
6

ieEventStat
Purpose:

This function returns an integer that indicates the type of event detected for
Quick Basic and C/C++ language programs.

Syntax:

Quick Basic - IEVENTSTAT

C, C++ - unsigned ieEventStat()

Return Value:

Error code for C/C++ commands.

Comments:

The function ieEventStat may be called at the beginning of an interrupt
service routine to determine which event(s) were detected. The function
ieEventStat returns an integer value with the following meanings:

Value Meaning Include file constants
1 SRQ detected SRQSERV
2 Timeout occurred TIMEOUTSERV
4 Error detected ERRORSERV

For Quick Basic, this function will read-then-clear the driver's EventStat
Register. Only call this function once after an interrupt.

For C, the event flag is set when the driver activates the user's service routine
and is maintained throughout the routine. The driver will automatically
clear the flag when exiting the service routine.

6-23

6

 continued ieEventStat
For both C and Quick Basic, the bus SRQ event is treated differently than
the other two events; it is triggered and latched when SRQ is asserted on the
bus. The user has to ensure his service routine will clear the device's SRQ
before exiting, otherwise, the subsequent SRQ event will most likely be lost.

Examples:

For Quick Basic
EVENTFLAG% = IEEVENTSTAT
'AND EVENTFLAG% with SRQSERV, TIMEOUTSERV
and ERRORSERV to determine event cause(s)
'See section 5.7 for a complete example

For C/C++
EventFlag = ieEventStat();
/* AND EventFlag with SRQServ, TimeOutServ and ErrorServ
to determine event cause(s) */

6-24

7
6

ieFindLstn
Purpose:

This command performs the IEEE 488.2 Find Listeners protocol and returns
a list of all found listeners in the given address list.

Syntax:

Quick Basic - CALL IEFINDLSTN (ADDRLIST%(),
RESULTLIST%())

C, C++ - void ieFindLstn(int far*AddrList, int far *ResultList)

Win DLL - WINAPI ieFindLstn(int CardID, PC2ADDR*
AddrList, intnumDev, PC2ADDR *ResultList,

int*numResults)

Return Value:

Result List as described below

Comments:

This command causes the 488-PC2 tests for presence of a device at each
primary address in the AddrList. If there is no response to the primary
address, the 488-PC2 tests for secondary address responses with the same
primary address. The address of each found device is plaed in the ResultList.
The protocol searches for listeners until all are found or until the ResultList
is full. The ResultList is terminated with END_ADDR (3131) by the user.
The AddrList and ResultList are defined in Table 6-3. The Quick Basic
and C/C++ protocols do not check primary address 0 for secondary addresses.
Note that the Win DLL only returns the primary addresses of any found
secondary addresses.

The user should examine the ResultList to see if all expected devices were
found. The ResultList can be edited and/or used as the address list for the
other 488.2 protocols which require an address list.

Caution:

Be careful when performing this command on systems with Bus
Analyzers, Bus Extenders , Bus Expanders or listen-only devices as they
may respond to all possible addresses.

6-25

6

 continued ieFindLstn
Examples:

The following examples are looking for devices at primary addresses 4 and
5.

For Quick Basic
DIM ADDRLIST%(1 TO 3)
DIM RESULTLIST%(1 TO 10)
ADDRLIST%(1)=04
ADDRLIST%(2)=05
ADDRLIST%(3)=3131 'end of list
RESULTLIST%(10)=3131 'mark end of list
CALL ieFindLstn(ADDRLIST%(1), RESULTLIST%(1))

For C/C++
int AddrList[]={04,05,3131};
int ResultList[10];
ResultList[9]=3131;
ieFindLstn(AddrList, ResultList);

6-26

7
6

ieFindRQS
Purpose:

This function performs the IEEE 488.2 FindRQS protocol and returns the
address and response of the first device that it finds which is requesting
service.

Syntax:

Quick Basic - IEFINDRQS (ADDRLIST%(0), RESPONSE%)

C, C++ - int ieFindRQS(int *AddrList, int Response)

Win DLL - ieFindRQS(PC2ADDR CardID, PC2ADDR*
AddrList, int numDev, PC2ADDR* respDev,

word* Response)

Return Value:

Address of requesting device for Quick Basic and C/C++ commands.
Error code for Win DLL command.

Comments:

This function causes the 488-PC2 to serial poll all devices in the AddrList
and returns the address of the first device found requesting service. The
found device's status byte is returned in the Response integer. The returned
address is 3131 if no devices are found that requested service and Response
is -1 if there is no status byte. If SRQ is not asserted, Win DLL returns the
STB and address of the first device on the bus.

Examples:

For Quick Basic
DIM ADDRLIST%(1 TO 4)
ADDRLIST%(1)=2
ADDRLIST%(2)=10
ADDRLIST%(3)=1701
ADDRLIST%(4)=3131 'mark end of list
FOUNDRQS=ieFindRQS% (ADDRLIST%(1), RESPONSE%)

6-27

6

continued ieFindRQS
For C/C++

int AddrsList[]={04,1701,3131};
int* Response;
int FoundRQS;
FoundRQS=ieFindRQS(int far*AddrList, int far*Response);

6-28

7
6

ieGotoStby
Purpose:

This command changes the Interface from an active Controller to a Standby
Controller and unasserts ATN if it was on.

Syntax:

Quick Basic - CALL ieGotoStby()

C, C++ - void ieGotoStby(void);

Return Value:

none

Bus Activity:

If ATN was on it is unasserted.

Comments:

The ieGotoStby command makes the Interface go to the Standby Controller
state and unassert ATN if it was the Active Controller. Control is recovered
by the ieTakeCtl command. When in standby, the Interface can participate
in a shadow handshake and let two external devices exchange data.

Examples:

For Quick Basic
CALL ieGotoStby

For C/C++
ieGotoStby();

6-29

6

ieGPIBStat
Purpose:

This function returns an integer that represents the state of all eight GPIB
interface signals.

Syntax:

Quick Basic - ieGPIBStat()

C, C++ - unsigned char ieGPIBStat(void)

Return Value:

An 8-bit value representing the state of the GPIB Control lines. A logical
'1' indicates the signal is asserted.

Bus Activity:

None

Comments:

The function ieGPIBStat returns the logical state of the GPIB interface
signals as an integer with a value of 0 to 255. The return value equals the
binary sum of the asserted signals. Signals are viewed inside the Interface's
transceivers so the results only reflect the external GPIB bus signals as
indicated in the following chart:

 Interface Mode
Bit Bit Weight Signal Ctlr Dev Talker Listener
0 1 ATN x x
1 2 EOI x x
2 4 SRQ x
3 8 IFC x
4 16 REN x
5 32 DAV x
6 64 NRFD x
7 128 NDAC x

6-30

7
6

ieGPIBStat continued
Examples:

For Quick Basic
SIGNALS% = ieGPIBStat

For C/C++
GPIB_Signals = ieGPIBStat();

6-31

6

ieInit
Purpose:

This command initializes the drivers and sets the Interface parameters. This
command must be called at least once at the beginning of the program.

Syntax:

BASIC/QB -CALL IEINIT (IOPORT%, MYADDR%,
 SETTING%)

Pascal - ieInit(IOPort, MyAddr, Setting: integer): integer;

C, C++ - void ieInit (unsigned int IOPort, int MyAddr,
unsigned int Setting)

Win DLL - ieInit (PC2ADDR CardID, int MyAddr,
WORD Setting)

Return Value:

none

Comments:

IOPort, CardID, MyAddr and Setting have their default values set by an
'include' file. See Table 6-2.

IOPort specifies the Interface's PC internal IO Address in HEX. Must be
the same value as the card's address switch setting (see section 1.4.1).
Default value is 02E1H for the 488-PC2 Card and 0378H for the 4818
Module. CardID specifies the card based on the switch setting. Default
value is 7

MyAddr specifies the IEEE 488 bus address of the Interface from 0 to 30.
Typical bus controller addresses are 0 and 21. Default is 21.

Setting is a 16 bit integer, expressed as 4 HEX characters, that sets the card's
operational parameters as shown in the following figure. Default value
varies according to the language used. The setting bit meanings are:

6-32

7
6

ieInit continued

BIT 15 13 614 5 4 3 2 1 012 11 10 9 8 7

0 0 No DMA
0 1 DMA Ch #1
1 0 DMA Ch #2
1 1 DMA Ch #3

Wait for DMA
Background DMA

0
1

Single byte DMA xfr
 Block DMA xfr

0
1

0 0 0 No interrupt
1 0 0 IRQ2
1 0 1 IRQ3
1 1 0 IRQ5
1 1 1 IRQ7

0 System Controller
1 Nonsystem Controller or Device

Slow Bus handshake
Fast Bus handshake

0
1

Enable error interrupt 1

Enable Timeout interrupt 1

Enable SRQ interrupt 1

0 0 BASIC interpreter, Pascal
0 1 Reserved - do not use
1 0 Quick Basic, C Language
1 1 Visual Basic for DOS, MS PDS 7.0

0 0

HEX MSD LSD

Examples:

Note - These examples are not meant to show default settings. Rather,
they are used to redefine some of the default values given in Table 6-2. The
user does not have to redefine non-changed parameters before calling ieInit.

For BASIC
IOPORT% = &H2E1
MYADDR% = 21
SETTING% = &H0000
'BASIC language with no DMA or interrupts
CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'Default value example - Card is at IO address 2E1, PC is
'device 21 and drivers execute interpretive BASIC.

For Quick Basic
IOPORT% = &H22E1 'some other card is using 02E1
MYADDR% = 0 'alternate bus ctlr address
SETTING% = &H0700
CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'Changed values example - card is at IO address 22E1, PC is
'device 0, timeout and SRQ interrupts are enabled
'Drivers execute compiled Basic.

6-33

6

 continued ieInit
For Quick Basicwith 4818 Module

IOPORT% = &H0378 '4818 Module on ptr port#1
MYADDR% = 0 'alternate bus ctlr address
SETTING% = &H0500
CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'Changed values example - 4818 module is at IO address 0378,
PC is 'device 0, interrupt for a time-out is enabled
'Drivers execute compiled Basic.

For C/C++
IOPort = 0x02E1; /* default IO value */
MyAddr = 21; /* default GPIB address */
Setting = 0x9701;
ieInit (IOPort, MyAddr, Setting);
/*This examples shows some non-default values
* Card is at IO address 02E1, PC is GPIB device 21
* Background DMA and fast handshakes are enabled
* Timeout and SRQ interrupts are enabled
* DMA channel #1 is enabled
*/

6-34

7
6

ieLlo
Purpose:

This command executes a Local Lockout (LLO) to disable a device's front
panel. It is received by all of the devices on the bus.

Syntax:

BASIC /QB - CALL IELLO

Pascal - ieLlo: integer;

C, C++ - int ieLlo(void)

Win DLL - ieLLO(PC2ADDR CardID)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Bus Activity:

ATN is set
LLO is sent

Comments:

If a device is in Local mode when the LLO is received, LLO does not take
affect until the device is addressed to listen.

Examples:

For BASIC/Quick BASIC
Call IELLO

For C/C++
ieLlo();

6-35

6

ieLocal
Purpose:

This command executes a Go-to-Local (GTL) or clears the REN line to
enable a device's front panel controls. It de-asserts the REN line.

Syntax:

BASIC/QB - CALL IELOCAL (DEVADDR%)

Pascal - ieLocal(DevAddr: integer): integer;

C, C++ - int ieLocal (int DevAddr)

Win DLL - ieLocal (PC2ADDR DevAddr)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the specified device to listen
and sends it the GTL command and REN is set false (high). The device will
remain in local mode until next addressed to listen. If local lockout is in
affect, the device will return to the local lockout state when next addressed
to listen.

If PrimAddr ≤ -1 or ≥ 31 then the driver sets REN false. All devices are
placed in local mode and local lockout mode is cancelled. Win DLL does
not clear the REN line or cancel the local lockout mode and returns Error
code 4 for an invalid paremeter.

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
CALL IELOCAL (DEVADDR%)
'Sets device 4 to local state

CALL IELOCAL (NOADDR%)
'Sets all devices to local state, NOADDR is defined in the

'include' file

6-36

7
6

ieLocal continued
For C/C++

ieLocal (4); /* sets device 4 to local state */

ieLocal (NoAddr); /* sets all devices to local state */

6-37

6

ieOutput
Purpose:

This command outputs a string to a device. After the string is sent, the
terminator specified by the ieEol function is sent. Used to send ASCII
strings and numbers to devices.

Syntax:

BASIC/QB -CALL IEOUTPUT (DEVADDR%, OUTSTRING$)

Pascal - ieOutput(DevAddr: integer,var OutString: string):
integer:

C, C++ - int ieOutput (int DevAddr, char *OutString)

Win DLL - ieOutput (PC2ADDR DevAddr, char *OutString, int
length)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the specified device to listen
and sends it the OutString followed by the ieEol termination specified in
OutEOLStr. Otherwise OutString is sent to the current addressed listener(s).

Examples:

For BASIC/Quick BASIC
DEVADDR% = 4
OUTSTRING$ ="ASCII String"
CALL IEOUTPUT (DEVADDR%, OUTSTRING$)
'Sends "ASCII String" to device 4

For C/C++
ieOutput (4, "ASCII string");
/* sends "ASCII String" to device 4

6-38

7
6

ieOutputA
Purpose:

This command outputs a long string from an array to a device and asserts
EOI on the last character as enabled by the ieEOL command. This command
only applys to Interpetive BASIC and Pascal languages.

Syntax:

BASIC - CALL IEOUTPUTA (DEVADDR%, DATASEG%,
BYTECNT%)

Pascal - ieOutputA (DevAddr, Dataseg, ByteCnt: integer):
integer;

Return Value:

Error code for Pascal commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the specified device to listen
and sends it the output with EOI asserted on the last byte if enabled by the
ieEol command. Otherwise the output is sent to the currently addressed
listener(s). ByteCnt specifies the number of bytes to be output by the
command, 0 to 65,535 bytes.

The output is taken from a segment in memory specified by DATASEG.
The starting address of the output data has an offset of 0 in that segment.

Examples:

For BASIC
DEVADDR% = 4
DATASEG%=&H4000
BYTECNT% = 300
CALL OUTPUTB (DEVADDR%, VARSEG
(OUTSTRING$), BYTECNT%)
'sends 300 bytes to device 4 from memory segment at 4000

HEX.

6-39

6

ieOutputB
Purpose:

This command outputs a string or a series of bytes to a device and asserts EOI
on the last character. This command is used to output binary data to a device.

Syntax:

Quick Basic - CALL ieOutputB (DEVADDR%, OUTSTRING$)

C, C++ - int ieOutputB (int DevAddr, char *OutString,
unsigned int ByteCnt)

Win DLL - ieOutputB (PC2ADDR DevAddr, char *OutString,
unsigned int ByteCnt)

Return Value:

Error code for C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the specified device to listen
and sends it the OutString with EOI asserted on the last byte. Otherwise the
OutString is sent to the currently addressed listener(s). ByteCnt specifies
the number of bytes to be output by the command.

Examples:

For Quick Basic
DEVADDR% = 4
OUTSTRING$ = "D" + CHAR$(129)
CALL ieOutputB (DEVADDR%, OUTSTRING$)
'sends ASCII 'D' plus 81 hex to device 4.

For C/C++
ieOutputB (4, "\65\31\n", 3);
/* sends 3 binary bytes to device 4 */

6-40

7
6

iePassCtl
Purpose:

This command passes control to a specified device.

Syntax:

Quick Basic - iePassClt (DEVADDR%)

C/C++ - int iePassCtl (int DevAddr)

Return Value:

Error Code forC/C++ commands

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the device to talk, sends it
the TCT command and deasserts ATN. Otherwise the command is not
executed and an error value is returned.

DevAddr specifies the address of the device being passed control.

Note - This command is not to be confused with the 488.2 protocol. It is
merely a convenient way to pass control without having to use the ieSend
command.

Example:

For Quick Basic
DEVADDR% = 22
CALL iePassCtl (DEVADDR%)

For C/C++
iePassCtl (22);

6-41

6

iePPoll
Purpose:

This command performs a parallel poll on the bus. The eight bit parallel poll
response is returned as an integer with a value of 0 to 255.

Syntax:

BASIC/QB - CALL IEPPOLL (PRESP%)

Pascal - iePPoll: integer;

C, C++ - unsigned char iePPoll(void)

Win DLL - iePPoll(PC2ADDR CardID)

Return Value:

Parallel poll response for Pascal, C/C++ and Win DLL commands.

Bus Activity:

ATN and EOI are asserted for 25 microseconds. Data lines are pulled low
(true) by devices' affirmative responses.

Comments:

For BASIC and Quick Basic commands, the parallel poll response is
returned in the integer PRESP.

The parallel poll response is an integer with a value of 0 to 255 that is the sum
of the data lines that were true at the end of the parallel poll time.
i.e. response = 129 if lines DIO1 and DIO8 were true.

Examples:

For BASIC/Quick Basic
CALL IEPPOLL (PRESP%)
'PRESP% contains the response byte value

For C/C++
PResp = iePPoll();
/* Presp contains the response byte value */

6-42

7
6

iePPollC
Purpose:

This command configures a device to respond to a parallel poll.

Syntax:

BASIC/QB - CALL IEPPOLLC (DEVADDR%, CONFIGBIT%)

Pascal - iePPollC(DevAddr, ConfigBit: integer): integer;

C, C++ - int iePPollC (int DevAddr, unsigned char ConfigBit)

Win DLL - iePPollC (PC2ADDR DevAddr, int ConfigBit)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr < 30 then the driver outputs the parallel poll enable (PPE)
command to the specified device, otherwise the PPE command is sent to the
current addressed listeners.

ConfigBit is an integer which specifies the data bit (line) for the parallel poll
response and the polarity of the response.

ConfigBit Values Meaning
0 - 7 Specifies data lines 0 - 7, false response

8 - 15 Specifies data lines 0 - 7, true response

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
CONFIGBIT% = 9
CALL IEPPOLLC (DEVADDR%, CONFIGBIT%)
'sets device 4 to respond positively on data line DIO2 (bit 1)

For C/C++
iePPollC (4, 15);
/* sets device 4 to respond positively on data line DIO8 (bit 7) */

6-43

6

iePPollU
Purpose:

This command performs a parallel poll unconfigure. It directs one or all
devices not to respond to a parallel poll.

Syntax:

BASIC /QB - CALL IEPPOLLU (DEVADDR%)

Pascal - iePPollU(DevAddr: integer): integer;

C, C++ - int iePPollU (int DevAddr)

Win DLL - iePPollU (PC2ADDR DevAddr)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ DevAddr ≤ 30 then the driver unconfigures a specific device,
otherwise the driver unconfigures all devices on the bus.

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
CALL IEPPOLLU (DEVADDR%)
'removes device 4 from responding to a parallel poll

CALL IEPPOLLU (NOADDR%)
'all devices are unconfigured and will no longer respond to the
parallel poll

For C/C++
iePPollU (4);
/* removes device 4 from responding to a parallel poll */

iePPollU (NoAddr);
/* all devices are unconfigured and will no longer respond to
 a parallel poll */

6-44

7
6

ieRemote
Purpose:

This command sets the REN line true and places any specified device in the
remote mode.

Syntax:

BASIC/QB - CALL IEREMOTE (DEVADDR%)

Pascal - ieRemote(DevAddr: integer): integer;

C, C++ - int ieRemote (int DevAddr)

Win DLL - ieRemote (PC2ADDR DevAddr)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comment:

If 0 ≤PrimAddr ≤ 30 then the driver sets REN on and addresses the specified
device to listen, otherwise no device is addressed. Note that a device will
not switch to remote mode until it is addressed to listen.

Examples:

For BASIC/Quick Basic
DEVADDR% - 4
CALL IEREMOTE (DEVADDR%)
'Sets REN true and device 4 to remote mode

CALL IEREMOTE (NOADDR%)
'Sets REN line true

For C/C++
ieRemote (4);
/* Sets REN true and device 4 to remote mode */

ieRemote (NoAddr);
/* Sets REN true */

6-45

6

ieReset
Purpose:

This command performs the IEEE 488.2 Reset protocol on the entire system
and sends the *RST command to the listed devices.

Syntax:

Quick Basic - CALL ieReset (ADDRLIST%())

C, C++ - void ieReset(int far* AddrList)

Win DLL - ieReset(PC2AADDR CardID, PC2AADDR
AddrList, int numDev)

Return Value:

none

Comments:

This command causes the 488-PC2 to assert REN, pulse IFC for over 100
microseconds, output the universal Device Clear command and sends the
*RST command to all listed devices in the AddrList. For the PC2 Win
DLL, the numDev must equal the number of listed addresses.

Caution - Check all non-IEEE 488.2 devices' response to the *RST
command before putting them in the AddrList.

Examples:

For Quick Basic
DIM ADDRLIST%(1 TO 3)
ADDRLIST%(1)=2
ADDRLIST%(2)=5
ADDRLIST%(3)=3131
CALL ieReset (ADDRLIST%(1))

For C/C++
AddrList[3]={2,5,3131};
ieReset(AddrList);

6-46

7
6

ieSend
Purpose:

This command outputs user specified GPIB commands and data to the bus
to generate custom command sequences. The ieSend command is used to
address devices with secondary addresses, to establish multiple listeners, to
pass control or to establish another talker.

Syntax:

BASIC/QB - CALL IESEND (CMDSTRING$)

Pascal - ieSend(var CmdString: string): integer;

C, C++ - int ieSend (const char* CmdString)

Win DLL - ieSend (PC2ADDR CardID, LPSTR CmdString,
int ByteCnt)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

CmdString is a string of standard IEEE 488 bus interface command
mnemonics separated by a space. The mnemonics are:

MLA My listen address (MyAddr)
MTA My talk address (MyAddr)
UNL, UNT Unlisten and Untalk
LISTEN n Listen device n
TALK n Talk device n
SEC n Secondary Address n
DCL Device Clear
SDC Selected Device Clear
GET Trigger
GTL Go to Local
LLO Local Lockout
PPC Parallel Poll Configure
PPD Parallel Poll Unconfigure
PPE Parallel Poll Enable
PPU Parallel Poll Disable

6-47

6

continued ieSend
SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control
DATA Unasserts ATN to send any subsequent

characters as data.

See Appendix A1 for more information about the above bus commands.
Recomendation - Always start the command sequences with UNL to
unlisten any unwanted listeners.

Examples:

For BASIC/Quick Basic
CMDSTRING$ = "UNL MTA LISTEN 4 SEC 01 DATA 'T1"
CALL IESEND (CMDSTRING$)
'sends string "T1" to device 4 secondary 1

CMDSTRING$ = "UNL MTA LISTEN 4 5 GTL"
CALL IESEND (CMDSTRING$)
'addresses devices 4 and 5 to both listen, and triggers both
'devices

For C/C++
CmdString = "UNL MTA LISTEN 4 SEC 01 DATA 'T1'"
ieSend (CmdString);
/* sends 'T1' instruction to device 4 secondary 1 */

CmdStr = "UNL MTA LISTEN 4 5 GTL"
ieSend (cmdStr);
/* addresses devices 4 and 5 to listen and
* triggers both devices
*/

6-48

7
6

ieServiceDisable
Purpose:

This command disables user event service routines.

Syntax:

C, C++ - void ieServiceDisable (unsigned int EventCode)

Return Value:

None.

Bus Activity:

None

Comments:

EventCode is an unsigned integer representing one or more of the following
service routines:

Value Disabled Service Routine
4 if command intended to disable error service
2 if command intended to disable time out service
1 if command intended to disable SRQ service

This command allows a C program to disable from one to three service
routines previously enabled by the ieServiceEnable command. If EventCode
has a bit set for a service that is not enabled, the bit is ignored.

Examples:

For C/C++
ieServiceDisable (1);
/* SRQ service disabled */

6-49

6

ieServiceEnable
Purpose:

Installs user defined event-service routine(s). Use ieServiceDisable to
disable the service routine.

Syntax:

C, C++ - int ieServiceEnable (unsigned EventCode,
pGPIBService SRQServ [, pGPIBServiceTOutServ
[, pGPIBServiceErrServ]]);

Comments:

EventCode is an unsigned integer representing one or more of the following
routines:

Value Service Routine
4 if command intended to install error service
2 if command intended to install time out service
1 if command intended to install SRQ service

Parameters - SRQServ, TOutServ & ErrServ: point to user defined service
routines.

For Interpetive BASIC, Quick Basic or Pascal language programs, refer to
the interrupt handling section in their language description chapters.

6-50

7
6

ieServiceEnable continued
For C this command allows the user to install from one to three service
routines in a single call. User defined service routine must be declared as a
far routine, take no argument and return void. When designing a service
routine, the C user must pay attention to the following:

Rule of thumb for user' installed event-handler:

1. The user's handler may safely call PC2 routines for servicing.

2. The user's handler may safely call other routines.
Provided those called routines are stack-and-local base, they do
not have any side-affect and they are recursivable and do not
rely on any static and/or global variables for correct operation.

3. The provision in rule #2 also applies to chained routines as well.
That is a called called called … called routine.

4. Provision rules #2 and #3 applies to user designed routines as
well as runtime libraries.

5. Violation of rules #2 and #3 is considered unsafe unless the user
can guarantee he doesn't call those called routines in the event-
waiting-loop.

Examples:

For C/C++
ieServiceEnable (1, UserSRQService);
/*to install SRQ Service Routine */

6-51

6

ieSPoll
Purpose:

This command performs a serial poll on the specified device. The eight bit
serial poll response is returned as an integer with a value of 0 to 255.

Syntax:

BASIC/QB - CALL IESPOLL (DEVADDR%, SRESP%)

Pascal - ieSPoll (DevAddr: integer): integer;

C, C++ - int ieSPoll (int DevAddr)

Win DLL - ieSPoll (PC2ADDR DevAddr)

Return Value:

Serial poll response for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the device as a talker, sends
it the serial poll enable command and reads back its status byte. After the
status byte has been read, the device is sent the serial poll disable command
and untalked. Otherwise the DevAddr is out of range and an error is created.

For Interpetive BASIC, Pascal and Win DLL, the response is a 8 bits in the
lower order byte with a value of 0 to 255.

For Quick Basic and C/C++, the response is 16 bits. Bit 15 is the Error flag,
bits 14-8 are the Error codes (see ieStatus) and bits 7-0 are the device's serial
poll response.

15 14 8 7 0
0/1 Error codes, 0-9 Device resp, 0-255

6-52

7
6

ieSPoll continued
Examples:

For BASIC/Quick Basic
DEVADDR% = 04
CALL IESPOLL (DEVADDR%, SRESP%)
'SRESP% contains device 4's response to the serial poll

For C/C++
Sresp = ieSPoll (4);
/* SResp contains device 4's response to the serial poll */

6-53

6

ieSRQStat
Purpose:

This function returns an integer that indicates the logic level of the GPIB
SRQ line.

Syntax:

Quick Basic - ieSRQStat

C, C++ - bool ieSRQStat(void)

Return Value:

Logic level of GPIB SRQ line.

Bus Activity:

None

Comments:

This function returns the logic level for the GPIB interface signal SRQ. 1
= asserted, 0 = not asserted.

Examples:

For Quick Basic
SRQ% = ieSRQStat

For C/C++
SRQ = ieSRQStat();

6-54

7
6

ieStatus
Purpose:

This commands returns status information about the interface and the last
called command.

Syntax:

BASIC/QB - CALL IESTATUS (STATUSCODE%, STATUS%)

Pascal - ieStatus (StatusCode: integer): integer;

C, C++ - unsigned int ieStatus (int StatusCode)

Win DLL - ieStatus (PC2ADDR CardID,
int StatusCode)

Return Value:

Status response for Pascal, C/C++ and Win DLL commands.

Bus Activity:

None

Comments:

The StatusCode selects whether the command reads the registers of the
NEC7210 GPIB controller chip on the Interface, returns driver settings or
status information about the last called command. For BASIC and Quick
Basic, STATUS contains the command status.

The Status Codes are:

Status Code Status Contents
0 - 7 GPIB chip (NEC7210) registers 0 - 7.
8 Error Number of last called command.
9 Count of string bytes that are output or entered.
10 Timeout interval in milliseconds.
11 I/O port address of NEC7210.
12 Returns the Setting parameter of the last ieInit

command.

6-55

6

continued ieStatus
Status Code 8 returns the following error codes:

Status Error
0 No error
1 Handshake timeout
2 Interface error
3 Called a command when not system controller or

controller-in-charge
4 Invalid passed parameter(s)
5 Break key used to quit handshake
6 Failed to allocate DMA buffer
7 Could not find a device requesting service
8 No acceptor present on the bus
9 Could not find 488-PC2 Card or 4818 Module

Refer to the ieErrPtr command for additional information on reading error
codes and byte transfer counts.

Examples:

For BASIC/Quick Basic
STATUS CODE% = 9 'Reads byte count
CALL IESTATUS (STATUSCODE%, STATUS%)
'STATUS% value is the number of bytes sent or received by
the last called command.

For C/C++
Status = ieStatus (9);
/* Status value is the number of bytes sent or received by the
last called command */

6-56

7
6

ieTakeCtl
Purpose:

The ieTakeCtl command changes the Interface from a standby Controller to
an active Controller. The Interface takes control asynchronously,
synchronously or synchronously after sensing EOI. This command is not
available for BASIC or Pascal language programs.

Syntax:

Quick Basic - CALL ieTakeCtl(MODE%)

C, C++ - int ieTakeCtl(int Mode)

Return Value:

Error code for C/C++ commands

Bus Activity:

INTERFACEtakes_control and asserts ATN.

Comments:

The command ieTakeCtl causes the Interface to take control of the bus. If
Mode = TC_ASYNC then the Interface takes control immediately without
regard for any existing data transfer operations. If Mode = TC_SYNC then
the Interface takes synchronously by waiting for any existing data handshake
to be completed before asserting ATN. If Mode = TC_END then the
Interface takes control synchronously at the end of the next data handshake
that has EOI asserted or handshakes the EOS byte. Use TC_ASYNC to take
control when no handshakes exist such as after a timeout. Use TC_END to
take control after two devices have exchanged a data message.

Include file
Value constant Method

0 TC_ASYNC Take Control Asynchronously
1 TC_SYNC Take Control Synchronously
2 TC_END Take Control Synchronously after

EOI asserted or EOS byte sensed.

6-57

6

continued ieTakeCtl
Caution:

The IEEE-488 Standard recommends against taking control asynchronously
since there is a possibility that bus devices can erroneously interpet a data
caharacter as a bus command when ATN is asserted asynchronously.

Examples:

For Quick Basic
CALL ieTakeCtl (TC_END%)
' takes control after handshaking EOS or a byte with EOI

' asserted

For C/C++
ieTakeCtl(TC_SYNC);
/*takes control after the next handshake */

6-58

7
6

ieTimeOut
Purpose:

This command sets the GPIB handshake Timeout value in milliseconds.
This command should be called before executing any data transfers on the
bus.

Syntax:

BASIC/QB - CALL IETIMEOUT (TIME%)

Pascal - ieTimeOut (Time: integer): integer;

C, C++ - int ieTimeOut (unsigned int Time)

Win DLL - ieTimeOut (PC2ADDR CardID, unsigned int Time)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Bus Activity:

None

Comments:

The Time sets the maximum length of time in milliseconds that a bus
handshake can take before the handshake is aborted. An aborted handshake
produces error code 1 (see ieStatus command). Set Time to 0 to disable the
timeout function when single stepping the system.

Time Timeout
0 Disables the timeout function
1 to 32,767 1 to 32,767 milliseconds
-1 to -32,767 (65,536 + Time) milliseconds

Note that the Time period for Interpetive BASIC, Pascal and Win DLL
commands is dependent upon the CPU clock and will vary from PC to PC.
The Time period for Quick Basic and C/C++ commands is independent of
the CPU clock and is therefore as accurate as the hardware permits.

6-59

6

continued ieTimeOut
Examples:

For BASIC/Quick Basic
NOTIMEOUT% = 0
CALL IETIMEOUT (NOTIMEOUT%)
' disables timeout function

TIME% = 10000
CALL IETIMEOUT (TIME%)
' sets timeout to 10 seconds

For C/C++
ieTimeOut(0); /* disables timeout function */

ieTimeOut (10000); /* sets timeout to 10 seconds */

6-60

7
6

ieTrigger
Purpose:

This command triggers a specific device or sends a trigger command (GET)
to the bus.

Syntax:

BASIC/QB - CALL IETRIGGER (DEVADDR%)

Pascal - ieTrigger (DevAddr: integer): integer;

C, C++ - int ieTrigger (int DevAddr)

Win DLL - ieTrigger (PC2ADDR DevAddr)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0 ≤ PrimAddr ≤ 30 then the driver addresses the specified device to listen
and sends it the GET command, otherwise the driver outputs the GET
command to all currently addressed listeners.

Examples:

For BASIC/Quick Basic
DEVADDR% = 4
CALL IETRIGGER (DEVADDR%) ' Triggers device 4

CALL IETRIGGER (NOADDR%)
' Sends GET command to the bus

For C/C++
ieTrigger (4); /* Triggers device 4 */

ieTrigger (NoAddr); /* sends GET command to the bus */

6-61

6

ieWaitSRQ
Purpose:

This function suspends program activities and waits for SRQ to be asserted
or until timeout occurs. The function returns the logical state of the SRQ line
at return time.

Syntax:

Quick Basic - ieWaitSRQ(SLEEPTIME%)

C/C++ - bool ieWaitSRQ (int SleepTime)

Return Value:

One if SRQ is set, zero otherwise.

Bus Activity:

None

Comments:

This function suspends the program for a specified time period specified by
SleepTime in milliseconds or until SRQ is asserted, whichever comes first.
Returned value indicates state of the SRQ bus signal when the function
ended; 1 = asserted. If SleepTime is set to 0, the function returns
immediately.

Examples:

For Quick Basic:
SLEEPTIME%=2 ' sleep for 2 seconds
SRQSTATE=ieWaitSRQ (SLEEPTIME%)

For C/C++
SRQState = ieWaitSRQ(0);
/* SRQState is immediately returned */

6-62

7
6

msDelay - Utility Function
Purpose:

This Utility function suspends program execution for the specified time in
milliseconds.

Syntax:

Quick Basic - CALL msDelay CDECL(BYVAL ms%)

C/C++ - void_far msDelay (unsigned ms)

Return Value:

None

Bus Activity:

None

Comments:

This function uses the system real time clock and is independent of the CPU
clock frequency.

Examples:

For Quick Basic:
DelayTime% = 100
CALL msDelay(DelayTime%)
'delays program for 100 milliseconds

For C/C++
msDelay(100)
/* delays program for 100 ms */

6-63

6

Utility Function - icsTimer
Purpose:

This Utility function provides the ability to read system time with a high
resolution.

Syntax:

Quick Basic - icsTimer& CDECL()

C/C++ - unsigned long_far icsTimer (void)

Return Value:

Number of 215 microsecond periods since last midnight.

Bus Activity:

None

Comments:

Returned value is the number of 215 microsecond periods since midnight.
Since Quick Basic does not support unsigned numbers, if the returned value
is less than zero, it is actually:

4292967295-(absolute of the returned value)

Examples:

For Quick Basic:
Time = icsTimer&

For C/C++
Time = icsTimer();
/* Time since midnight is immediately returned */

6-64

7
6

isTimeOut - Utility Function
Purpose:

This Utility function provides the ability to set a time mark and then test to
see if the real time has gone past the time mark. This function should not be
confused with the ieTimeout command which sets the GPIB bus handshake
timeout value.

Syntax:

Quick Basic - isTimeOut% CDECL(BYVAL msMark%)

C/C++ - bool_far isTimeOut (unsigned msMark)

Return Value:

TRUE if system time has passed the previously set time mark, FALSE
otherwise.

Comments:

A call of the isTimeOut function with msMark ≠ zero sets a time mark at
system time plus msMark. All subsequent calls with msMark = zero test
to see if the system time has passed the set time mark value. msMark is in
milliseconds

Examples:

For Quick Basic:
msMark% = 16000 'establishes a 16 second period
Status% = isTimeOut(msMark%) ' set the mark

'execute some program statements here
Status% = isTimeOut(0)
IF Status% = 1 THEN PRINT "Time elapsed"

For C/C++
Time = isTimeOut(16000); /*sets a 16 second time mark*/

/* execute some program statements here */

if (isTimeOut(0))
{print "Time Elapsed" ;
exit ;

A-1

A1

Appendix Page

A1 IEEE 488 Bus Description A-2

A1.1 IEEE 488.1 Bus A-2

A1.2 IEEE 488.2 Standard A-8

A1.3 SCPI Commands A-12

A2 Troubleshooting & Repair A-15

A2.2 Troubleshooting Procedure A-15

A2.3 Board Tests A-18

A2.4 Repair A-20

Appendix

A-2

A1

A1 IEEE 488 BUS DESCRIPTION (IEEE 488.1, IEEE
488.2, SCPI)

The IEEE 488 Bus, also known as the GPIB bus (General Purpose
Instrument Bus), is a convenient means of connecting instruments and
computers together to form a test system or to transfer data. The IEEE STD
488.1 covers the electrical and mechanical bus specifications and the state
diagrams for each bus function. The IEEE STD 488.2-1987 expanded on
the original specification and established data formats, common commands
for 488.2 compatible devices, a basic status reporting structure, and control-
ler protocols. Later, the SCPI standard developed a tree like series of
standard commands for programmable instruments and a way of expanding
the status structure so that similar instruments by different manufacturers
can be controlled by the same program.

A1.1 IEEE 488.1 Bus

The IEEE STD 488 Bus, or GPIB as it is commonly referred to, provides a
means of transferring data and commands between devices. The physical
portion of the bus is governed by IEEE-STD 488.1 - 1978. The interface
functions for each device are contained within that device itself, so only
passive cabling is needed to interconnect the devices. The cables connect
all instruments, controllers and other components of the system in parallel
to the signal line as shown in Figure A-1. Eight of the lines (DIO1-DIO8)
are reserved for the transfer of data and other messages in a byte-serial, bit-
parallel manner. Data and message transfer is asynchronous, coordinated
by the three handshake lines (DAV, NRFD, NDAC). The other five lines
(ATN, REN, IFC, EOI and SRQ) control Bus activity.

 DEVICE B
 Able to Talk

and to Listen

 e.g. DVM

 DEVICE C
Able to Listen

 e.g. Signal
 generator

IFC
ATN
SRQ
REN
EOI

DAV
NRFD
NDAC

DIO1-8

Bus Control
 Lines

Byte Transfer
Control Lines

Data Bus
(8 Lines)

 DEVICE A
 Able to Talk,
Listen and Control

 e.g. Computer

Figure A-1 IEEE 488 Bus

A1.1.1 Bus Devices

A-3

A1

Devices connected to the bus may act as talkers, listeners, controllers, or
combinations of the three functions, depending upon their internal capabil-
ity.

A talker sends device dependent messages, i.e., data, status.
A listener accepts interface messages, bus commands and device-
dependent messages, i.e., setup commands, data.
A controller can send interface messages to manage the other devices,
address devices to talk or listen and command specific actions within
devices.

A talker might be a dumb measuring device like a sensor. A listener could
be an output device like a printer. However, most devices have both talker-
listener capability such as a DVM which accepts instructions and returns
data. Any 488.2 compatible device has to be both a talker and a listener to
be able to respond to the 488.2 Common Commands.

A1.1.2 Bus Controllers

Controllers are referred to as the Active Controller, the Controller-in-
charge (CIC) and the System Controller. The System Controller is the
controller that becomes active at power turn-on. The System Controller is
teh only controller in the system that can drive the REN and IFC lines and
is the initial Controller-in-charge. Systems may have multiple controllers
but only one controller can be the Active Controller or CIC at a time. In a
multiple controller system, control is 'passed' from the System Controller,
who was the initial controller, to an inactive controller by the Take Control
command. The Controller receiving this command becomes the Active
Controller (CIC) and the passing controller becomes an inactive controller.

Most GPIB systems have just one controller and there is never a need to pass
control to another controller.

A1.1.3 Device Addressing

The GPIB bus has both primary and optional secondary address capability.
Each GPIB device must have a unique primary address so it can be
addressed as a listener or as a talker. The secondary addresses provide a way
to address multichannel hardware or special modes inside a device.

A-4

A1

The GPIB address fields in Table A-1are 5 bits wide and have 32 unique
values. Values 0 to 30 can be assigned to any device as its primary address.
Value 31 is used as the untalk or unlisten address and cannot be used by a
device. Controllers have an address so they can address themselves to talk,
to listen and to pass control. Traditionally, controllers have used addresses
0 (National Instruments) or 21 (Hewlett-Packard and ICS Electronics).

Devices traditionally have their primary address set by a small rocker
switch on their rear panel. Instruments with front panel displays often have
a way of setting their address from the front panel. Some new instruments
whose firmware includes a SCPI command parser, can save their GPIB
address in EEPROM and have it changed by a command from the GPIB
Controller.

A1.1.4 Data Transmission and Handshake Lines

Information is transmitted on the data lines under sequential control of the
three handshake lines (DAV, NFRD, NDAC). No step in the sequence can
be initiated until the previous step is completed. Information transfer
proceeds as fast as the devices respond (up to 1 Mbs) [Note 1], but no faster
than that allowed by the slowest addressed device. This permits several
devices to receive the same message byte at the same time. Although
several devices can be addressed to listen simultaneously, only one device
at a time can be addressed as a talker. When a talk address is put on the data
lines, all other talkers are normally unaddressed.

When a device is addressed as a talker, it is allowed to send device-
dependent messages (e.g., data) when the controller-in-charge sets the ATN
line false. The data messages are typically a series of ASCII characters
ending with a LF. The data messages may also be eight-bit binary
characters terminated with EOI asserted when the last byte is talked onto the
GPIB bus. The controller-in-charge must be programmed to correctly
respond to each device's message termination sequence to avoid hanging-
up the system or leaving characters that will be output when the device is
next addressed as a talker.

1. National Instruments has advocated a higher hadshake rate which has been voted
down by Hewlett-Packard, ICS and others as having potential problems with older
divices.

A-5

A1

A1.1.5 Interface Management Lines

ATN (attention) is set true by the controller-in-charge while it is sending
interface messages or device addresses. The messages are transmitted on
the seven least significant data lines and are listed in the MSG columns in
Table A-1. The Interface Message bytes and Address codes are the same
as the 128 ASCII character set. The ATN line is asserted when sending
Interface Messages or Addresses and off when sending data.

IFC (interface clear) is sent by the system controller and places the interface
system in a known quiescent state with all devices unaddressed.

REN (remote enable) is sent by the system controller and is used with other
interface messages or device addresses to select either local or remote
control of each device.

SRQ (service request) is sent by any device on the bus that wants service,
such as counter that has just completed a time-interval measurement. EOI
(end or identify) is used by a device to indicate the end of a multiple-byte
transfer sequence. When a controller-in-charge sets both the ATN and EOI
lines true, each device configured to respond to a parallel poll indicates its
current status on the DIO line assigned to it.

A1.1.6 Interface Messages and Bus Commands

Table A-1 shows the Interface Messages and Device Addresses in the MSG
columns of the Table and their definitions below the table. Interface
Messages in the Universal Command Group and will be accepted by all
devices at any time. Interface Messages in the Addressed Command Group
and will only be accepted by devices that have been addressed as a listener
and are normally directed to a specific device.

A1.1.7 System Configuration Guidelines

The designers of the IEEE 488 Bus made it virtually foolproof to assemble
a trouble free system as long as the user follows the Standard. The rules that
the user must observe are:

1. Limit the number of devices on the GPIB bus to 15 devices including
the bus controller.

A
-6

A
1

T
A

B
L

E
 A

-1 IE
E

E
 488 C

O
M

M
A

N
D

 A
N

D
 A

D
D

R
E

SS
M

E
SSA

G
E

S

ASCII
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

ASCII -- IEEE 488 BUS MESSAGES (COMMANDS AND ADDRESS) HEX CODES

Notes: 1. Device Address messages shown in decimal
2. Message codes are:

3. ATN off, Bus data is ASCII; ATN on, Bus data is an IEEE MSG.

DCL -- Devices Clear
GET -- Device Trigger
GTL -- Go to Local

LLO -- Local Lockout
PPC -- Parallel Poll Configure
PPU -- Parallel Poll Unconfigure

SDC -- Selected Device Clear
SPD -- Serial Poll Disable
SPE -- Serial Poll Enable

ADDRESSED
COMMAND

GROUP

UNIVERSAL
COMMAND

GROUP

LISTEN ADDRESS GROUP TALK ADDRESS GROUP SECONDARY COMMAND
GROUP

PRIMARY COMMAND GROUP (PCG)

LSD
MSD

MSG

GTL

SDC
PPC

GET
TCT

ASCII
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

MSG

LLO

DCL
PPU

SPE
SPD

ASCII
SP
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/

MSG1
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

ASCII
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

MSG1
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

UNL

ASCII
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

ASCII
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^

MSG1
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

MSG1
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

UNT

ASCII
`
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

MSG ASCII
p
q
r
s
t
u
v
w
x
y
z
(
|
)
~

DEL

MSG
0 1 2 3 4 5 6 7

_

M
E

A
N

IN
G

 D
E

F
IN

E
D

 B
Y

 P
C

G
 C

O
D

E

M
E

A
N

IN
G

 D
E

F
IN

E
D

 B
Y

 P
C

G
 C

O
D

E

A-7

A1

2. Maximum total cable length of 20 meters.

3. Cable lenght between devices and should be 2 meters or less to obtain
the full 1 Mbyte/second data transfer rate.

4. More than 50% of the devices must be powered on. (Power on all
devices for full1 Mbyte/second data transfer)

Use Bus Extenders or Expanders to increase the cable length of number of
devices on the bus. Extenders and Expanders are available from ICS.

A1.1.8 Mechanical and Electrical Interface

Devices on the bus are normally interconnected by cables with dual male/
female connectors at each end to allow easy cable stacking. The 24
conductor cable pinouts are shown in Figure A-2. Signal levels are 0 and
3.3 Vdc with 0 being the logic true level. Cable connectors are modified
Amphenol 24 pin Blue ribbon style connectors (57-30240) with metric jack
screws.

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

DIO5
DIO6
DIO7
DIO8
REN
GND (TW PAIR W/DAV)
GND (TW PAIR W/NRFD)
GND (TW PAIR W/NDAC)
GND (TW PAIR W/FC)
GND (TW PAIR W SRQ)
GND (TW PAIR W/ATN)
SIGNAL GROUND

DIO1
DIO2
DIO3
DIO4

EOI
DAV

NRFD
NDAC

IFC
SRQ
ATN

SHIELD

Figure A-2 GPIB Signal-Pin Assignments

A-8

A1

A1.2 IEEE 488.2 STANDARD

A1.2.1 IEEE 488.2 Message Formats

The IEEE 488.2 Standard was established in 1987 to standardize message
protocols, status reporting and define a set of common commands for use
on the IEEE 488 bus. IEEE 488.2 devices are supposed to receive messages
in a more flexible manner than they send. A message sent from GPIB
controller to GPIB device is called: PROGRAM MESSAGE. A message
sent from device to controller is called: RESPONSE MESSAGE. As part
of the protocol standardization the following rules were generated:

(;) Semicolons are used to separate messages.
(:) Colons are used to separate command words.
(,) Commas are used to separate data fields.
<nl> Line feed and/or EOI on last character terminates a

'program message'. Line feed (ASCII 10) and EOI
terminates a RESPONSE MESSAGE.

(*) Asterisk defines a 488.2 common command.
(?) Ends a query where a reply is expected.

A1.2.2 IEEE 488.2 Reporting Structure

With IEEE 488.2, status reporting was enhanced from the simple serial poll
response byte in IEEE 488.1 to the multiple register concept shown in
Figure A-3. The IEEE 488.2 Standard standardized the bit assignments in
the Status Byte Register, added eight more bits of information in the Event
Status Register and introduced the concept of summary bits reporting to the
Status Byte Register. The Status and Event registers have enabling registers
that can control the generation of their summary reporting bits and ulti-
mately SRQ generation. Each 488.2 device must implement a Status Byte
Register, a Standard Event Status Register and an Output Message Queue
as shown in Figure A-3. A 488.2 compliant device must have this minimum
status reporting structure and may include any number of additional
condition registers, event registers and enabling registers providing they
follow the model shown in Figure A-3.

A-9

A1

7 6 5 4 3 2 1 0

 7 6 5 4 3 2 1 0

 &

 &

 &

 &

 &

 &

 &

 &

7 6 5 4 3 2 1 0

Lo
gi

ca
l O

R

ESB

RQS
6

MSS
MAV

7 6 5 4 3 2 1 0

 7 6 5 4 3 2 1 0

 &

 &

 &
 &

 &

 &

 &

 &

7 6 5 4 3 2 1 0

Lo
gi

ca
l O

R

Service
Request
Generation

{

{

P
ow

er
 O

n

U
se

r
R

eq
ue

st

C
om

m
an

d
E

rr
or

E
xe

cu
tio

n
E

rr
or

D
ev

ic
e

D
ep

en
de

nt
 E

rr
or

Q
ue

ry
 E

rr
or

R
eq

ue
st

 C
on

tr
ol

O
pe

ra
tio

n
C

om
pl

et
e

Standard
Event Status Register

*ESR?

Standard
Event Status

Enable
Register

*ESE <NRf>
*ESE?

Queue
Not-Empty

Output Queue

Read by Serial Poll

Read by *STB?

Status Byte
Register

Service Request Enable Register
*SRE <NRf> *SRE?

Figure A-3 488.2 Required Status Reporting Capabilities

A-10

A1

A1.2.3 IEEE 488.2 Common Commands

The 488.2 specification also mandated a list of common commands that all
devices will support. All of the Common Commands start with an asterisk.
Commands that end with a question mark are queries. Query responses can
be an ASCII number or an ASCII string. Other numerical formats such as
HEX or Binary are legal as long as the device supports the required ASCII
format. These commands are:

1 *CLS Clear Status Command
2 *ESE Standard Event Status Enable Command
3 *ESE? Standard Event Status Enable Query
4 *ESR? Standard Event Status Register Query
5 *IDN? Identification Query
6 *OPC Operation Complete Command
7 *OPC? Operation Complete Query
8 *RST Reset Command
9 *SRE Service Request Enable Command
10 *SRE? Service Request Enable Query
11 *STB? Status Byte Query
12 *TST? Self-Test Query
13 *WAI Wait-to-Continue Command

In addition to the above common commands, devices that support parallel
polls must support the following three commands

*IST? Individual Status Query?
*PRE Parallel Poll Register Enable Command
*PRE? Parallel Poll Register Enable Query

Devices that support Device Trigger must support the following commands:

*TRG Trigger Command

Controllers must support the following command:

*PCB Pass Control Back Command

Devices that save and restore settings support the following commands:

*RCL Recall configuration
*SAV Save configuration

A-11

A1

A1.2.4 IEEE 488.2 Differences From IEEE 488.1

The user who is familiar with the older 488.1 devices should take the
following differences into account when programming a 488.2 device.

A 488.2 device outputs the Status Byte Register contents plus the RQS bit
in response to a serial poll. The RQS bit is reset by the serial poll. The same
488.2 device outputs the Status Byte Register contents plus the MSS bit in
response to a *STB? query. The MSS bit is cleared when the condition is
cleared.

488.2 restricts the Device Clear to only clearing the device's buffers and
pending operations. It does not clear the Status Reporting Structure or the
output lines. Use *CLS to clear the Status Structure and *RST or *RCL to
reset the outputs.

488.2 commands are really special data messages and are executed by the
device's parser. Always allow sufficient time for the parser to execute the
commands before sending the device a 488.1 command. i.e. a Device Clear
sent too soon will erase any pending commands and reset the parser.

Enable Register values are only saved and restored if the *PSC command
is 0. A *PSC command of 1 causes zeros to be loaded into the enable
registers when the unit is next reset or powered on.

A-12

A1

A1.3 SCPI COMMANDS

A1.3.1 Introduction

SCPI (Standard Commands for Programmable Instruments) builds on the
programming syntax of 488.2 to give the programmer the capability
handling a wide variety of instrument functions in a common manner. This
gives all instruments a common "look and feel".

SCPI commands use common command words defined in the SCPI speci-
fication. Control of any instrument capability that is described in SCPI shall
be implemented exactly as specified. Guidelines are included for adding
new defined commands in the future as new instruments are introduced
without causing programming problems.

SCPI is designed to be laid on top of the hardware - independent portion of
the IEEE 488.2 and operates with any language or graphic instrument
program generators. The obvious benefits of SCPI for the ATE program-
mer is in reducing the learning time on how to program multiple SCPI
instruments since they all use a common command language and syntax.

A second benefit of SCPI is that its English like structure and words are self
documenting, eliminating the needs for comments explaining cryptic
instrument commands. A third benefit is the reduction in programming
effort to replace one manufacturer's instrument with one from another
manufacturer, where both instruments have the same capabilities.

This consistent programming environment is achieved by the use of defined
program messages, instrument responses and data formats for all SCPI
devices, regardless of the manufacturer.

A1.3.2 Command Structure and Examples

SCPI commands are based on a hierarchical structure that eliminates the
need for most multi-word mnemonics. Each key word in the command
steps the device parser out along the decision branch - similar to a squirrel
hopping from the tree trunk out on the branches to the leaves. Subsequent
keywords are considered to be at the same branch level until a new complete
command is sent to the device. SCPI commands may be abbreviated as
shown by the capital letters in Figure A-4 or the whole key word may be

A-13

A1

used when entering a command. Figure A-4 shows some single SCPI
commands for setting up and querying a serial interface.

SYSTem:COMMunicate:SERial:BAUD 9600 <nl>
Sets the baud rate to 9600 baud

SYST:COMM:SER:BAUD? <nl>
Queries the current baud setting

SYST:COMM:SER:BITS 8 <nl>
Sets character format to 8 data bits

Figure A-4 SCPI Command Examples

Multiple SCPI commands may be concatenated together as a compound
command using semi colons as command separators. The first command
is always referenced to the root node. Subsequent commands are referenced
to the same tree level as the previous command. Starting the subsequent
command with a colon puts it back at the root node. IEEE 488.2 common
commands and queries can be freely mixed with SCPI messages in the same
program message without affecting the above rules. Figure A-5 shows
some compound command examples.

SYST:COMM:SER:BAUD 9600; BAUD? <nl>

SYST:COMM:SER:BAUD 9600; :SYST:COMM:SER:
BITS 8 <nl>

SYST:COMM:SER:BAUD 9600; BAUD?; *ESR?; BIT 6;
BIT?; PACE XON; PACE?; *ESR? <nl>

Figure A-5 Compound Command Examples

A typical response would be: 9600; 0; 8; XON; 32 <nl>

The response includes five items because the command contains 5 queries.
The first item is 9600 which is the baud rate, the second item is ESR=0
which means no errors (so far). The third item is 8 (bit/word) which is the
current setting. The BIT 6 command was not accepted because only 7 or 8
are valid for this command. The fourth item XON means that XON is

A-14

A1

active. The last item is 32 (ESR register bit 5) which means execution error
- caused by the BIT 6 command.

A1.3.3 Variables and Channel Lists

SCPI variables are separated by a space from the last keyword in the SCPI
command. The variables can be numeric values, boolean values or ASCII
strings. Numeric values are typically decimal numbers unless otherwise
stated. When setting or querying register values, the decimal variable
represents the sum of the binary bit weights for the bits with a logic '1' value.
e.g. a decimal value of 23 represents 16 + 4 + 2 + 1 or 0001 0111 in binary.
Boolean values can be either 0 or 1 or else OFF or ON. ASCII strings can
be any legal ASCII character between 0 and 255 decimal except for 10
which is the Linefeed character.

Channel lists are used as a way of listing multiple values. Channel lists are
enclosed in parenthesis and start with the ASCII '@' character. The values
are separated with commas. The length of the channel list is determined by
the unit. A range of values can be indicated by the two end values separated
by a colon. e.g.

(@1,2,3,4) lists sequential values
(@ 1:4) shows a range of sequential values
(@ 1,5,7,34) lists random values

Figure A-6 Channel List Examples

A1.3.4 Error Reporting

SCPI provides a means of reporting errors by responses to the SYST:ERR?
query. If the SCPI error queue is empty, the unit responds with 0, "No error"
message. The error queue is cleared at power turn-on, by a *CLS command
or by reading all current error messages. The error messages and numbers
are defined by the SCPI specification and are the same for all SCPI devices.

A1.3.5 Additional Information about SCPI

For more information about SCPI refer to the SCPI Standard or to the SCPI
Consortiun in care of Bodie Enterprises, La Mesa, CA, (619) 697-8790

A-15

A2

A2 TROUBLESHOOTING AND REPAIR

A2.1 INTRODUCTION

This section provides trouble shooting and repair information for the Model
488-PC2 Card.

A2.2 TROUBLESHOOTING PROCEDURE

If the installation was successful, the majority of problems are due to a
misunderstanding of the GPIB commands, the format the different devices
use for data messages (especially the terminators), and incorrect program-
ming. Some system faults are caused by poor cabling contacts, overly long
cables and mixing fast and slow handshake devices on the same bus. The
remedy for these last three problems is to keep the Bus connectors clean and
tight, follow the IEEE-488 Standard for cable lengths and to check the
devices' specifications to avoid mixing devices with different handshake
speeds on the same bus. Older devices with open collector data drivers
should not be used with a high speed Bus Controller.

The best solution for the first three problems is to read each device's manual
before starting the program to gain an understanding of the device's unique
setup requirements and command/data formats. Use a Keyboard Controller
program (see Getting Started) to test a device's response to unfamiliar
commands before using it in a program. New GPIB users should read
Appendix A1 and Section 4 of this manual. The Troubleshooting Guide in
Table A-2 lists the symptom, probable cause and suggested corrective
action for some of the more common bus problems.

A-16

A2

TABLE A-2 TROUBLESHOOTING GUIDE

Symptom Possible Fault Action or Check

Computer will not Board not correctly Check card to be sure it
boot up after board placed in connector is firmly seated in the
installed connector

Other boards loose Check other boards to see
that they were not dis-
turbed.

I/O Address Conflict Check computer for
I/O address conflict and
reassign the 488-PC2 to
another address

Computer hangs up IO address incorrect or Check device manager
when calling driver does not match program settings for conflicts
routines setting

Check value in Init com-
mand Setting parameter

Card unable to Installation fault Check Device Manager
control instruments to be sure the computer

recognizes the card.

Open Bus Cable Check Bus Cable connec-
tions

Instrument Power Check Instrument

Instrument Address Check instrument address
setting.

Instrument does not Wrong instrument Address setting on the
respond address device

Address setting used in
the program.

Device address conflicts
with controller's address

A-17

A2

Bad bus connections Check bus with bus ana-
lyzer or substitute a known
good instrument

Wrong instrument Verify with instrument
programming sequence manual

Test with Keyboard Con-
troller. Start with simple
commands like *idn?

Missing escape Instrument needs an
sequence an escape sequence be-

fore recognizing com-
mands

Bad or corrupted Bad or dirty GPIB Check Bus Cable
data Bus Cable

Clean Cable Connectors

Instrument hangs up Instrument output Send instrument a
when sends data out control not reset Selective Device Clear

Instrument output Verify instrument output
terminates on wrong terminator matches what
characters the program expects. See

the ieEOL command.

TABLE A-2 TROUBLESHOOTING GUIDE
(CONTINUED)

Symptom Possible Fault Action or Check

A-18

A2

A2.3 BOARD TESTS

A2.3.1 General tests

If the GPIB Controller appears to have suddenly failed, check the Device
Manager to be sure that it is still installed. Be sure the card is physically
plugged into the computer. Cable stresses can cause the card to become
loose.

Use the Keyboard Controller program and a known good device to test the
GPIB controller. Read back the device's IDN message and verify that all
of the characters are correct and that there are no dropped bits.

A2.3.2 BASIC Test Program

The 488.2 DOS Driver Disk contains a board test routine in the BASIC
directory that verifies most of the 488-PC2's circuits. This program checks
the card's internal data bus, GPIB controller chip, the interrupt and the DMA
logic. Of necessity, this program is limited to only being able to check
functions that are not being used by the other devices, i.e. it cannot check
DMA level2 with a floppy disk controller in the system.

Table A-3 lists the board test errors and the corrective action. When the test
is run, any errors are displayed on the monitor. In case of a conflict between
the test program and Table A3, , the board test program error messages take
precedence over those in Table A-3. Check the BASIC readme file for any
changes to the Board Test Program.

A2.3.3 PC2TEST Program

The Utility Directory contains a test program that checks the 488-PC2's data
and signal lines for boards at I/O address 02E1. This program tests some
of the 488.2 logic that was added after the BASIC test was written. To run
the PC2TEST Program, disconnect any GPIB bus cables from the card.
Select the Utility directory and type PC2TEST at the DOS prompt. The
program will display any errors it finds on the PC monitor.

A-19

A2

TABLE A-3 BOARD TEST ERROR CODES

Error Error Cause Correction
Code

1 Unable to access Hardware failure Replace card
the 488-PC2

Data bus fault Check internal bus
for shorts

Bus transceiver Check data
failure transceiver

Decoder failure Replace PAL

2 Unable to access Bad I/O address Check other cards
card's I/O address selection I/O addresses

Hardware failure Check CMD latch
setting

Defective GPIB chip Replace GPIB chip

40 Interrupt level failure IRQ Switch value Verify IRQ switch
wrong setting

Interrupt level not Other devices in the
available for use PC using that level

DCDR Pal failure Replace PAL

GPIB chip failure Replace GPIB con-
troller

50 DMA channel failure DMA switch value Verify DMA switch

DMA channel not Other devices in the
available for use PC using the chan-

nel

DCDR Pal failure Replace PAL

GPIB chip failure Replace GPIB con-
troller

A-20

A2

A2.4 REPAIR AND RETURNING FOR REPAIR

Repair of the 488-PC2 Card is done by returning the unit to the factory or
to your local distributor. Units in warranty should always be returned to the
factory or else repaired only after receiving permission from an ICS
customer service representative.

When returning a unit, a board assembly, or other products to ICS for repair,
it is necessary to go through the following steps:

1. Contact the ICS customer service department and ask for a
return material authorization (RMA) number. An ICS applica-
tions engineer will want to discuss the problem at this time to
verify that the unit needs to be returned, or to assist in correct-
ing the problem. We have discovered that more than one-third
of the difficulties customers call about can be resolved over the
phone as opposed to returning a unit for repair.

2. Write a description of the problem and attach it to the material
being returned. Describe the installation, system failure symp-
toms, and how it was being used. If the item being returned is
a board assembly, describe how you isolated the fault to it.
Include your name and phone number so we can call you if we
have any questions. Remember, we need to locate the problem
in order to fix it.

3. Pack the item with the fault description in a box large enough
to accommodate a minimum of two inches of packing material
on all four sides, the top, and the bottom of the box. Securely
seal the box.

4. Mark the shipping label to the attention of RMA #_____. The
RMA number is very important since it is our way of identify-
ing your unit in order to return it to you.

5. Ship the box to ICS freight prepaid. ICS does not pay freight
to return the unit to ICS, but will prepay the freight to return the
repaired item to you.

Index-1

I

Index
Symbols

488-PC2
Compatibility 1-2
Description 2-1
DMA Operations 4-12
Features 2-1
Shipment Verification 1-2
Specifications 2-6
Switch Settings 1-7

488.2 Driver
Description 2-2
DMA data transfers 4-11
DOS Support 3-4
Features 2-2
Quick Reference table3-6
Supported Languages2-3
Utilities 3-5
WIN16 Components 3-3
WIN32 Components 3-1

488.2 Drivers
Short Form Command List3-6

488.2 Programming 4-9
488.2 Protocols 4-9

A

ABORT command 9-7
Accessories 2-9
Address

Switch setting 1-7
ALLSPOLL command 9-8, 9-9
Approvals 2-8
Architecture

488-PC2 2-6

B

Backups 1-4
BASIC

Directory contents 5-2
PC2 interrupts 5-5

BASIC Drivers 5-1
Installation 5-1
Programming 5-3
Using interrupts 5-5

Board Test Routines
BASIC Test Program

Error Codes A-19
Bodie Enterprises A-14
BORC_CPP directory contents,

table 5-20
Bus device functions 2-5

Index-2

I

C

C/C++
Demo program 5-24
Demo programs 5-18
Installation 5-18
Interrupts 5-22
Library files 5-18
Programming 5-18, 5-20
Using 488-PC2 as a device5-

23
Using the IEEE-488 library

functions 5-21
CardID 4-2
Certifications 2-8
CLOSE command 9-10
Command

ABORT 9-7
ALLSPOLL 9-8, 9-9
Calling Conventions 4-4
CLOSE 9-10
Common Parameters9-2
Constants and default val-

ues 9-1
Conventions 9-1
Default constant values,

table 9-4, 9-5
DEVCLR 9-11
DEVICE 9-12
ENTER 9-13, 9-14
ENTERB 9-15, 9-16, 9-17
EOL 9-18, 9-19
Error Codes 9-5
ERRPTR 9-20
FINDLSTN 9-24, 9-25
FINDRQS 9-26, 9-27
GOTOSTBY 9-28
INIT 9-31, 9-32, 9-33
LLO 9-34
LOCAL 9-35, 9-36
OUTPUT 9-37
OUTPUTB 9-38, 9-39
PASSCTL 9-40

PPOLL 9-41
PPOLLC 9-42
PPOLLU 9-43
Reference 9-1, 9-6
REMOTE 9-44
RESET 9-45
SEND 9-46, 9-47
SERVICEDISABLE 9-48
SERVICEENABLE 9-49, 9-50
SPOLL 9-51, 9-52
STATUS 9-54, 9-55

Error Codes 9-55
Status Codes 9-54

TAKECTL 9-56, 9-57
Terminators 9-3
TIMEOUT 9-58, 9-59
TRIGGER 9-60
Usage, advanced

488-PC2 DMA operations 4-
12
Passing control 4-11

Utility Functions 9-62
DELAY 9-62
TIMEOUT 9-64
TIMER 9-63

Command and address messages,
IEEE 488 A-6

Commands
488-PC2 Table 3-6, 3-7, 3-

8, 3-9, 3-10, 3-11
Default Value Table 9-3
Driver 3-6
Return Values 9-5
SCPI A-12
SCPI, example A-13

Common Command Parameters 9-2
Compatibility with earlier 488-PC2

Products 1-2
Control

Passing 4-11
Controller

Functions 2-4

Index-3

I

D

DEVCLR command 9-11
Device

Program considerations4-14
Using a PC 4-13

DEVICE command 9-12
Direct Memory Access. See DMA
DLL. See PC2 Windows DLL
DMA 2-6

488-PC2 operations4-12
Channel settings 1-10
Data Transfer Rates2-7
Features 4-11
Switch setting 1-9
Transfer rates 2-7

DOS
C Language Programming5-

18
Interpretive Basic 5-1
Pascal Programming5-13
Quick Basic Programming5-7

E

ENTER command 9-13, 9-14
ENTERA command 9-15
ENTERB command 9-16, 9-17
EOL command 9-18, 9-19
ERRPTR command 9-20
EVENTSTAT function 9-21, 9-

22, 9-23

F

FINDLSTN command 9-24, 9-25
FINDRQS command 9-26, 9-27
Function

EVENTSTAT 9-21, 9-22, 9-23
GPIBSTAT 9-29, 9-30
SRQSTAT 9-53
WAITSRQ 9-61

Functions
Bus Device 2-5
Controller 2-4

G

General information 2-1
GOTOSTBY command 9-28
GPIB

Command terminators 9-3
Pinouts A-7
System Configuration

Guidelines A-5
GPIB Bus

Signal-Pin AssignmentsA-7
GPIB Keyboard

Operation 1-12
GPIB Programming 4-1
GPIBSTAT function 9-29, 9-30

H

Hardware Installation 1-5

I

I/O Address
Selection 1-7
Switch settings 1-7
Wait State Switch Setting1-9

IEEE 488
Command and address

messages A-6
Message formats

(IEEE 488.2) A-11
IEEE 488 Bus

488.2 required status reporting
capabilities A-9

Commands A-5
Controller capabilities 2-4
Controllers A-3
Data Transmission A-4
Description A-2
Device Addressing A-3
Devices A-3
Electrical Pinouts A-7
Interface MessagesA-5
Management Lines A-5
Mechanical Interface A-7
PC2 Device Capabilities 2-5

Index-4

I

Specifications 2-4
System Guidelines A-5

IEEE 488 Interface
Bus Figure A-2
SCPI command structure and

examples A-12
SCPI commands A-12
SCPI error reporting A-14

IEEE 488.1 Bus Description A-2
IEEE 488.2 STANDARD A-8

Common CommandsA-10
Differences from 488.1 A-11
Message FormatsA-8
Reporting Structure A-8

Information, general 2-1
INIT command 9-31, 9-32, 9-33
Installation 1-5

Hardware 1-5
Software 1-6

DOS 1-6
Testing GPIB Interface 1-15

Interactive Command Line Program
PC2-KYBD 1-14

Interrupts
Level settings

488-PC2 1-10
PC2 BASIC 5-5
PC2 Quick Basic 5-11
PC2 settings 2-6
Quick Basic 5-11
Using in BASIC 5-5
using in C 5-22

K

Keyboard Controller Program 1-12

L

Languages
Supported 2-3

LLO command 9-34
LOCAL command 9-35, 9-36

M

MSC_CPP directory contents,
table 5-19

Multiline Messages A-5

O

OUTPUT command 9-37
OUTPUTA command 9-38
OUTPUTB command 9-39

P

Pascal
BTPASCAL Directory 5-14
Installation 5-13
Microsoft Programming 5-17
MSPASCAL Directory 5-15
Programming 5-13, 5-15
Turbo Programming 5-16

PASSCTL command 9-40
PC

Interrupt
PC2 2-6

Using as a device 4-13
PC2_Kybd 1-14

Operation 1-14
Physical

PC2 2-7
PPOLL command 9-41
PPOLLC command 9-42
PPOLLU command 9-43
Primary Address 4-2
Program

C/C++
Demo program 5-24

Device considerations4-14
Program Examples 4-15

Visual Basic 4-15
Visual C++ 4-18

Index-5

I

Programming 4-1
488.2 Protocols 4-9
Basic GPIB Techniques4-1
Clearing a device 4-6
Confirming a device's pres-

ence 4-9
Device Addressing 4-2
Examples 4-15
Finding devices 4-9
Initializing the Bus 4-5
Multiple 488-PC2 Cards 4-8
Notes & Cautions 4-11
Program Outline 4-1
Reading Data 4-6
Reading device status4-6
Sending Data 4-5
Sending GPIB Bus com-

mands 4-7
Timeouts 4-8

Q

Quick Basic
Directory contents 5-8
Includes 5-10
Installation 5-7
Interrupts 5-11
Interrupts, PC2 5-11
Parameters 5-11
Programming 5-7, 5-9

R

REMOTE command 9-44
Repair A-20. See also Returning

for Repair
RESET command 9-45
Returning for repair A-20
Rocker

Assignments and switch loca-
tion 1-8

S

SCPI
Additional Information A-14
Channel list A-14

Examples A-14
Command structure and

example A-12
Commands

Example A-13
Commands and queriesA-12
Compound commands

examples A-13, A-14
Error Reporting A-14
Error reporting A-14
Variables A-14

Secondary Address 4-2
SEND command 9-46, 9-47
SERVICEDISABLE command 9-48
SERVICEENABLE command 9-

49, 9-50
Settings

Address Switch 1-7
DMA channel 1-10
DMA Switch 1-9
Interrupt level 1-10, 1-11
Wait delay 1-9
Wait State Switch 1-9

Shipment verification 1-2
Signal-Pin assignments

GPIB bus A-7
Software

Organization 1-11
Software License 1-3
Specifications

Architecture
PC2 2-6

Bus device functions 2-5
DMA transfer rates 2-7
PC interrupt 2-6
Physical

PC2 2-7
SPOLL command 9-51, 9-52
SRQSTAT function 9-53

Index-6

I

Starting 1-1
Status Code 9-54
STATUS command 9-54, 9-55
Switch

Address Settings 1-7
DMA setting 1-9
Location and rocker assign-

ments 1-8
Wait State Setting 1-9

T

TAKECTL command 9-56, 9-57
Terminators

GPIB command 9-3
Testing

488-PC2 Installation 1-15
TIMEOUT command 9-58, 9-59
TRIGGER command 9-60
Troubleshooting

BASIC Board Test ProgramA-
18

Board Test Routines
Basic Test Error CodesA-19

Board Tests A-18
Guide A-16, A-17
PC2TEST Program A-18
Procedure A-15

Troubleshooting and Repair A-15
Troubleshooting Guide A-16, A-17

V

Visual Basic examples 4-15

W

Wait
Delay settings 1-9
State switch setting 1-9

WAITSRQ function 9-61
Warranty 1-3

