ELECTRONICS

division of Systems West Inc.

MODEL 488-PC2
IEEE 488.2 Bus Controller
User's Manual

IEEE-488.2

Model 488-PC2
IEEE 488.2 Bus Controller
User's Manual

m ICS
ELECTRONICS

division of Systems West Inc.

7034 Commerce Circle, Pleasanton, CA 94588

(925) 416-1000, FAX (925) 416-0105 Publication Number 123077

WEB http://www.icselect.com July 2000 Edition Rev 6

LIMITED WARRANTY

Within 60 monthsof delivery, ICSElectronics will repair or replacethisproduct, at our
option, if any part is found to be defective in materials or workmanship (labor is
included). Return this product to ICS Electronics, or other designated repair station,
freight prepaid, for prompt repair or replacement. Contact ICS for a return material
authorization (RMA) number prior to returning the product for repair. Any software
delivered with this product is only warranted for 90 days from the date of delivery.

CERTIFICATION

ICS Electronics certifies that this instrument was carefully inspected and tested at the
factory prior to shipment and was found to meet all requirements of the specification
under which it was furnished.

EMI/RFI WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with theinstruction manual, may causeinterferenceto
radio communications. The488-PC2 Card hasbeentested and found to comply withthe
limitsfor aClass A computing device pursuant to Subpart Jof Part 15 of the FCC Rules
and to comply with the EEC Standards EN 55022 and EN 50082-1, which are designed
to provide reasonabl e protection against such interference when operated in acommer-
cia environment. Operation of this equipment in aresidential areais likely to cause
interference, inwhich casetheuser, at hisown expense, will berequiredtotakewhatever
measures may be required to correct the interference.

C € Certificate of Compliance reproduced in Figure 2-2
TRADEMARKS

The following trademarks referred to in this manual are the property of the following
companies:

HP and HPIB are registered trademarks of Hewlett-Packard Corp., Palo Alto, CA

IBM and IBM PC are registered trademarks of International Business Machines
Corporation, Boca Raton, FL

ICSisaregistered trademark of 1CS Electronics, Systems West, Inc, Milpitas, CA

APPLICABILITY and CHANGES

Thismanual appliesto the 488-PC2 Revision 1 Card and WindowsDriversVersion5.0
or later.

Copyright ICS Electronics div Systems West, Inc., 2000

Contents

Getting Started
Shipment verification, Software License, Installation, Keyboard
Controller Programs and Testing the Hardware.

General Information
Controller Card Descriptions, Software Capabilities, Supported
Languages , Hardware Specifications, Approvals and Accessories.

488.2 Drivers
Driver Description, WIN and DOS Components, Command Set Quick
Reference List

GPIB Programming
GPIB Programming Concepts, Device Addressing, Command
Conventions, Basic Programming, |EEE-488.2 Programming,
Advanced Programming, Visual Basic and C Program Examples.

DOS L anguage References
Installation Instructions, Supplied Files, Unique Program Instructions
and Using Interrupts for: Interpreted BASIC, Quick Basic, Pascal
and C/C++ Languages.

488-PC2 Command References
Command conventions, Constants, Errors and Command definitions

Appendix
A1l Background information on IEEE 488.1 Bus, |EEE 488.2 Status
Structure, Protocols, Common Commands and SCPI Commands
A-2 Trouble shooting, Testing and Repair.

I ndex

—HE>HoBoBE~BoBOE-

Getting Started

11 INTRODUCTION

This section provides you with al the information you need to get started
with the Model 488-PC2 | EEE 488.2 Controller Card. Thissection covers
shipment verification, compatibility with earlier products, switch setting
and installation, software license, backing up your software and the use of
ICS'sinteractive keyboard command program. Follow theinstructionsin
this section to install the card in your computer.

Figure1-1 488-PC2 GPIB Controller Card

1-1

12 488-PC2 SHIPMENT VERIFICATION

Take amoment to verify you have everything you need. If you ordered the
488-PC2 Card and Software we should have sent you:

(1) Model 488-PC2 |EEE 488.2 Controller Card, Rev 1
(1) 488.2 DOS Driver Disk

(1) 488.2 Windows Driver Disk

(1) Model 488-PC2 User's Manual

TheDriver and Utility programsmay beon 3.5 inch disksor onaCD ROM
disk. If anything is missing or damaged, save the shipping carton and
contact ICS immediately. ICS will arrange for a replacement shipment
without waiting for the shipper to process any claim.

13 COMPATIBILITY WITH EARLIER PRODUCTS

The 488-PC2 Revision 1 Card is compatible with the Revision 0 Card and
may be used with the earlier driversin any PC/XT or PC/AT computer.

The 488.2 Driver shipped with the 488-PC2 Card supports DOS programs
written in Interpretive BASIC, Quick Basic, Visua Basic for DOS, Mi-
crosoft Professional Basic 7.1, Pascal, C, Turbo C, or C++. The 488.2
Driver's Dynamic Linked Libraries provide 16 and 32-bit support for C,
C++, Visual Basic for Windows or any other programming language that
follows the Microsoft Windows calling conventions. They may be used
with most existing programs by changing the include file and recompiling
the program. The 488.2 Driversare only compatiblewiththe Revision 1 or
later 488-PC2 Cards.

Any programswritten with earlier softwaredriverswill haveto be checked
for command syntax before linking them to the new 488.2 Driver. Quick
Basic programswill haveto modify theieEnterB andieOutputB commands
for the new command syntax.

1-2

14 ICSSOFTWARE LICENSE AGREEMENT

Note - Please carefully read this License agreement prior to opening the
mediaenvel opeor using the software. By opening the mediaenvel opeand/
or using the software, the customer agreesto all provisions of thislicense.
If you do not agree with the license, you may return this product for afull
refund.

14.1 License

In exchange for payment of hisinvoice, ICS Electronics (ICS) grants the
customer alicense in the software subject to the following conditions.

Customer may use the software with any ICS GPIB Controller product and
may not reverseengineer or reverse-compilethesoftware. Customer agrees
the software is copyrighted and may only make archival copies of it.
Customer shall not sublicense or distribute copies of the software without
thewritten permission of ICS. A transfer or sale of the software to athird
party is permitted, if the third party agrees to this license and the origina
purchaser ceases use of the software.

Customer may use ICS's software to make executable programs and
distribute them freely without permission of ICS.

ICS may terminate this license and seek damages if the customer failsto
comply with the license after being notified in writing to cure the failure.
Customer agreesthat the software does not include updates and ICS is not
responsiblefor any damageto the customer's computer or other equipment.

142 Warranty

ICS warranties for a 90 day period, that the software will execute its
instructionswhen properly installed onacomputer asspecified herein. ICS
further warrantsthe mediato befree of defectsand workmanship for alike
90day period. Thecustomer'sremedy for afailureineither caseistoreturn
the mediato ICS for replacement.

| CSmakesno other warranty with respect to the software. 1nno event shall

ICSbeliablefor any other incidental or consequential damagesfromtheuse
of this software.

1-3

15 BACK UP YOUR DISK

If the software is on 3.5 inch disks, it is strongly recommended that you
make abackup copy of the Disks supplied with the 488-PC2 Card. Usethe
backups for installation and put the original disksin asafe location. The
storage location should be in atemperature stable location and away from
all magnetic fields.

1-4

16

INSTALLATION

Check ICS'sweb site at www.icselect.com for the latest information about
installing the 488.2 Drivers and periodically for the latest version of the
488.2 Drivers. or for any updates.

16.1

Hardwar e | nstallation Procedure

To install the 488-PC2 Card, perform the following steps:

1

Turn off the computer by clicking the Window's 95 or 98 Start
button and then Shutdown. On the Shutdown Window, check the
Shutdown box and click Y esto start the shutdown process. Turn
power off when told it is safe to do so.

On computers with Windows 3.1, Select EXIT and YES when
asked if youwishto Exit Windows. Turn power off when safely at
the DOS prompt.

On computerswith DOS, exit any running program and turn power
off.

Remove the cover from the computer. Leave the power cord
connected to the computer so that it stays grounded.
Locateaunused I SA bus slot and removeits connector cover plate
and save the retaining screw.

Cut the antistatic bag containing the 488-PC2 card but do not
remove it from the bag.

Touch the computer frame with both hands to be sure that your
body isfree of any static electricity.

Removethe488-PC2 card fromitsantistati c bag and set therockers
on Switch S1 by following the instructions in Section 1.7. The
factory setting of all switchesinthe'0' position should work unless
you areinstalling multiple 488-PC2 cards, want to useinterruptsor
DMA.

Insert thecardfirmly intotheempty | SA busslot and fastenit down
with the saved retaining screw. (Note-the 488-PC2 card must be
fastened with the retaining screw for it work correctly.)

Replace the cover and turn the computer back on.

1-5

16.2

Windows 95/98 Softwar e | nstallation Procedure

Perform the following steps to install the 488.2 Drivers in a PC with
Windows 95 or Windows 98. Note- Closeall applicationsbeforeinstalling

the software.
1. Makeabackup copy of the Windows Driver Disk if ona3.5inch
disk.
2. InserttheWindowsDriver Disk inthecomputer'sfloppy disk drive
or put the CD in the computer's CD ROM drive.
3. If theinstallation program does not start automatically, click the
Windows' Start menu, point to Run and execute a:\setup
4. Follow the instructions on the screen to complete the software
instalation. Setup will install all of the WIN32 files on your
compulter.
1.6.3 Windows 3.1 Software I nstallation Procedure

Perform the following steps to install the 488.2 Drivers in a PC with
Windows 3.1. Note- Close al applications before installing the software.

1

2.

2.

4.

1.6.4

Make a backup copy of the Windows Driver Disk if ona3.5inch
disk.

Insert theWindows Driver Disk inthecomputer'sfloppy disk drive
or put the CD in the computer's CD ROM drive.

Click the Windows' Start menu, point to Settings and then execute
a\setup.

Follow the instructions on the screen to complete the software
instalation. Setup will install all of he WIN16 files on your
compulter.

DOS Softwar e | nstallation Procedure

The software installation instructions for DOS drivers are included in
Section 5 for each supported DOS language. If you are planning on doing
DOS programming, follow the instructions for your DOS programming
language.

1-6

1.7 488-PC2 CONFIGURATION SWITCH SETTINGS

The488-PC2 containsanine position rocker switch assembly, S1, that sets
the card's /O port base address, the interrupt request level, the DMA level,
andthel/OREADY waittime. Therocker switchislocatedintheupper left
of the 488-PC2 Card as shown in Figure 1-2.

Therockers are factory set to the off or '0' position which is fine for most
single card applications. This setting specifies Card I/O address 02E1, no
interrupt level, no DMA Channel and no I/O READY wait states. The
following sections provide specific instructions for setting the switch
rockers

1.7.1 /O Address Selection

When defining the PC/AT Computer's |/O addresses, IBM set the address
for the GPIB Adapter O Card at 02E1 hex. Subsequent GPIB Adapter card
addresses arelocated in 2000 hex increments above Adapter 0's address as
showninTable1-1. If, like most 488-PC2 users, your system hasonly one
cardit should besetto address02E1. Any additional 488-PC2 cardsshould
use the next available GPIB Adapter address.

Rockers 13 and 14 are used to set the 488-PC2' s 1/0 starting address. The
rocker’s correspond to the PC addresslines A13 and A14. Use Table 1-1
to convert the two most significant address digits into rocker switch
positions. The CardI D parameter identifiesthe card for theWindowsDLL.

When setting the rocker switches, follow the 1 and O silk screened on the
card. Do not use the switch's“on” and “off” |abelsto set the rockers.

TABLE 1-1 1/O0 ADDRESSROCKER SETTINGS

I/O Address CardID Switch Rocker
(Hex) 14 13
02E1* 7 0 0
22E1 6 0 1
42E1 5 1 0
62E1 4 1 1

*Factory setting

1-7

488-PC2 |EEE 488.2 INTERFACE
1 20
(SO Y |
L2 |3
e
D1 |
p2 |3
w1 | =
w2 | |
13 —
1= o | |=
n L1 |
A31 Al ~ L]
(a) 488-PC2 Card Layout
wn
1 = 0
L1 =1
L2 (A Interrupt Level - none
L4 |« [
p1 |~ } DMA Channel Selected - none
D2 |o [
wi (o[Wait States Selected - none
w2 [~ [}
13 | [1H
 lorcm } Card I/0 Address - 02E1 HEX

(b) Factory Settings for the 488-PC2 Configuration Switch

Figure1-2 488-PC2 Switch Location and Rocker Assignments

1-8

1.7.2 Wait State Switch Settings

Rockers W1 and W2 control the insertion of a wait state delay onto the
computer’sl/OREADY signal line. Thisdelay, whilenot required on most
computers, will allow the 488-PC2 to operate in computers with high bus
clock speeds. The 488-PC2's on card oscillator provides the clock signal
to the card'slogic so timing isnormally not a problem. Busclock speedis
NOT the same asthe CPU clock frequency and is normally a submultiple
of the CPU clock. Most new PC/ATs are designed with a8 +1 MHz bus
clock and do not require any wait states for correct operation. Check your
computer'smanual for your computer'sbusclock frequency and set the W1
and W2 rockers per Table 1-2.

TABLE 1-2 WAIT DELAY SETTINGS

CLOCK FREQUENCY WAIT SWITCHES
(MH?2) w1 W2
0to 9 0 o
91020 1 0

* Factory Setting
1.7.3 DMA Switch Setting

Rockers D1 and D2 select the PC's DMA channel that the 488-PC2 would
use for transferring data. DMA data transfers can be faster than pro-
grammed datatransfer on older, slow computersespecially for large blocks
of data. Using DMA data transfers is not advised if the processor clock
speed is greater than 100 MHz. (See Table 1-2) Using DMA is purely a
user’s option; the 488-PC2 will function just as well without using DMA.

Before setting the DMA switches, check your computer’s manual or the
Device Manager for an available DMA channel. IBM has made the
following DMA channel assignments for the PC/AT:

DMA Channel Function
CHO Memory refresh
CH1 SDLC /O
CH?2 Floppy disks
CH3 Hard disk

1-9

Most stand alone computers don’t have an SDL C interface so channel 1is
normally the safe channel to use. Only use channels?2 or 3if your computer
does not have floppy disk drives or ahard disk. Use Table 1-3 to convert
the selected DMA channel into D1 and D2 switch settings.

TABLE 1-3 DMA CHANNEL SETTINGS

SWITCHES

DMA Channel D2 D1
None* 0 0

1# 0 1

2 1 0

3 1 1

* Factory setting
#Recommended DMA Channel

1.7.4 Interrupt Level Settings

RockersL1, L2 and L4 select the PC’ sInterrupt Channel that the 488-PC2
card can useto interrupt the current program. Note that using interruptsis
purely a user’s option; the 488-PC2 will function just as well without
interrupts.

Before setting the Interrupt Level switches, check your computer’ s manual
or the Device Manager for available IRQs. Inthe PC/AT, IBM established
ashared interrupt concept that lets several adapters sharethe same channel.
The488-PC2 complieswith IBM’ s shared interrupt concept and can be set
to interrupt levels 2, 3, 5and 7. The following are IBM’s interrupt level
assignments for the PC/AT:

Interrupt
Level Users
Timer
Keyboard
Clocks, PC networks, Fixed disk ctlr
Serial port #2, PC network, SDLC
Serial port #, BSC, SDLC
Parallel port #2
Floppy disk controller
Parallel port #1, Data Acquisition, GPIB

~N~No o~ wWNEO

1-10

Use Table 1-4 to convert the selected Interrupt Level into switch settings.

TABLE 1-4 INTERRUPT LEVEL SETTINGS

IRQ Leve L4 L2 L1
None * 0 0 0
2 0 1 0
3 0 1 1
5# 1 0 1
7 1 1 1#

* Factory setting
#Recommended GPIB adapter interrupt level

1.8 SOFTWARE ORGANIZATION

The 488.2 Windows Driver software includes DLLs for controlling the
GPIB hardware, files for supporting various languages utility files and
demonstration programs. During installation, the DLLs are placed in the
Windows System directory. Thelanguage support files, demosand utility
files are placed in the ICS_GPIB directory. The files are organized into
directories that correspond to the operating system and the supported
language. Software use instructions vary with the computer's operating
systemand aredescribedinthesectionfor theappropriateoperating system.
ICS_GPIB directory containsaReadme.doc fileand | CSsGPIB Keyboard
Controller Program. Refer to Section 3 for more information about the
488.2 Driver.

The 488-PC2 DOS Driver software is organized into directories that
correspond to the languages they support. Software installation instruc-
tions vary with each language group and are described in the particular
section for that language. The root directory on the DOS Driver contains
a Readme.doc file and the PC2_KYBD Interactive Command Line Pro-
gram.

1-11

1.9 KEYBOARD CONTROLLER PROGRAMS

The488.2 Driver includestwo K eyboard Controller Programs. GPIBKybd
is aWindows 32-bit program that runs on Windows 95 and Windows 98.
PC2_KybdisaDOS program and runs on Windows 3.1. Usethe program
that matches your computer's operating system.

The Keyboard Controller Program lets a user interactively control GPIB
devicesdirectly fromthecomputer'skeyboard andistherecommended way
to test the 488-PC2 Card after its installation. The Keyboard Controller
Program is also useful for testing GPIB (HP-IB or IEEE-488) devices
without writing a program or for trying out device commands on a new
instrument before incorporating them into a program.

191 GPIB Keyboard Controller Operation

The Keyboard Controller program is installed in the Util directory with
other ICS files. To run the Keyboard Controller program, click the
Window's Start menu, point to Programs and then click ICS Electronics
GPIB. Select GPIBkybd from the submenu.

The program opens with the panel shown in Figure 1-3. The Keyboard
Controller panel isbest viewed with monitor screen settings of 1024 x 768
or 800 x 600. Other screen settings may result in a distorted view or lost
switch legends.

TheKeyboard Controller launchesit automatically runsthe488.2 FindL sth
tolearn what devicesare connected to the GPIB bus and displaysthefound
deviceaddressesinthe DeviceResponsemessagebox.. If thereismorethan
one device, enter the correct address in the Device Address box and click
the Set Address button.

The user can also change the Controllers address by entering a new value
into the Controller Address box and clicking Set Address. The Keyboard
Controller defaultsto aController addressof 21 whichit usesastheaddress
of the GPIB controller card in the computer. Y ou only need to change this
addressif it conflicts with the address of your device.

The Keyboard Controller enables the user to send or execute the most
popular 488.1 and 488.2 functions by clicking the buttons on the panel and

1-12

K= G Eepasnd Candiodber Predg s

Cmwmalier Addes sy D Akdreas g
T kdrmEL | | Seikddieee | | B] ey
Trarary Ml 7X
Frimasy Dia X Secoadesy ANH W THE Tard I°C
' Bmrsis FEH] Lwrvecw Ll |
Duimmti Ciril
- j T I Sl Pl
ren P _Tum |
P agw Cuary FReporas Fpadl Cbwacs RBaarans -
ity AR e ey
5 Feccaos, 404, RiH BEEDE Foess D7 B8 e B IR 10 M
_dwu |
Frred P
¢ = Elwcizecy deasn
o Syuisra W ke
Dt Twnsgar
Coled C oM FaBae 1B C1bBee T (W ra |

Figure1-3 GPIB Keyboard Controller Panel

to send and receive device commands. Once the device address has been
set, clicking on any 488.1 or 488.2 Command button will cause that
command to be executed. The 488.1 buttons generate |FCs, Device Clear,
Serial Poll the device and send the Trigger command. The 488.2 buttons
perform the FindL stn protocol, the AllSerialPoll and the FindRQS proto-
cols. Any device response appears in the Device Response message box.
The Help button, in the upper right, provides a description of each control
and what it does to the device.

To send data or a command to a device, simply type the command in the
Device Command box and click Send. Click Enter to read data from a
device or responses to a query. Device Responses appear in the large
Device Response message box. If Auto Query ischecked, then any Device
command that endswith aquestion mark or includes aquestion mark (such
as*idn?or A?1) will haveitsresponseautomatically appear inthe Response
message box.

The buttons along the bottom of the Keyboard Controller window set the
bustimeout. One or three seconds is recommended for manual operation.
Use Off whenworking withaBusAnalyzer. Clicking Exit returnsthe user
to the Windows operating system.

1-13

19.2 PC2Keyboard Controller Program

The PC2_KYBD Interactive Command Line Program is a live keyboard
program for DOS that lets a user control GPIB devices directly from the
computer's keyboard. The PC2_KYBD program is agood way to test the
488-PC2 Card after itsinstallation or to test a GPIB devices's response to
a command before writing your program.

Before running the program, copy the PC2_KY BD.EXE program fromthe
Util directory to the computer's root directory. To run the program, type
PC2 _KYBD. The programwill first ask if you want to change the default
address of the GPIB device. The program uses GPIB address 21 asitsown
address. Enter anew addressor pressthe RETURN key to accept thedefault
address of 04 for the GPIB device.

The program then sends an Abort (IFC) to gain control of he bus and an
escape sequence for ICS's minibox modules. The program then uses the
*|DN? query to read an IDN message from the device at the GPIB address
set above. Theidn message or atimeout message is displayed to the user.

To send a device command to a device, simply type the command on the
keyboard and press RETURN. The program will address the device asto
listen and output your command. |f the command endswith or contains a
guestion mark, i.e. *IDN? or A?1, then the program will automatically
address the device as atalker and input the response. To input aresponse
manually, type a question mark and press RETURN.

eg
?

device response

PC2_Kybd supportsanumber of 488.1 commandsand 488.2 protocols. To
seealist of the supported bus commands or for assistance at any time, type
help and pressRETURN. To send abus command to the device, start the
command with an exclamation mark. i.e. 'spoll serial polls the device.

To exit the interactive command program, type !exit and press RETURN.
Answer N when asked if you want to restart the program.

1-14

110 Testingthe GPIB Card Installation

Totestthe488-PC2 cardinstallation, connect adevicetothe GPIB bus. Use
a 488.2 device if possible. Start the appropriate Keyboard Controller
program as described in Section 1.9.

Inthe GPIB Keyboard program, the device's address should appear in the
Device Address window. If not, enter the device's primary address from
700 to 730. (7 identifiesthe first 488-PC2 card in your computer) If the
device uses secondary addresses, enter the devices's address as 70000 to
73030. (Note: Using address 21 will conflict with the 488-PC2 Card's
address setting.)

In the PC2_kybd Program, the device address defaults to 4. Change the
device address to match the GPIB device's address when asked or at any
timewiththe!addr command. (Note: Using address 21 will conflict with
the 488-PC2 Card's address setting.)

What you do next depends upon the device. If the device is an 488.2
compatible device, send it the *idn? query and read back its idn response
string. Figure 1-3 shows an example of the *idn? query and a typical
response. Next, query the Event Status Register with the *esr? query.
Repeat until the response becomes 0.

If the device isan older 488.1 device, use a device particular command to
make the device do something and/or send back data. i.e. if thedeviceisa
DVM, setit uptomakeinternaly triggered readings. Usethe Read Device
Response button to read the measured value.

1-15

General Information

21 INTRODUCTION

Thissection providesgeneral information and specificationsfor the Model
488-PC2 |EEE 488.2 Controller Card and ICS's 488.2 Driver.

22 MODEL 488-PC2|EEE 488.2 CONTROLLER CARD

The 488-PC2 IEEE 488.2 Controller Card provides the GPIB physical
interface (el ectrical and mechanical components) for any ISA/EISA PCon
asmall half size card. The 488-PC2 Card fits inside any PC with ISA
expansion slots. Whenused with |CS's488.2 Driver, the488-PC2 supports
the488.2 Driver languagesand Microsoft DOSand Windows3.1/95 and 98
operating systems. The 488-PC2 Card may be used asaGPIB controller or
as adeviceinterface for transferring data to or from the PC.

Figure2-1 488-PC2IEEE-488.2 Controller Card

2-1

23 488.2DRIVER SOFTWARE CAPABILITIES

ICS's 488.2 Driver provides the functional portion of the GPIB interface
with versatile, easy-to-use GPIB language extensions for your current
programming language. For interpretive BASIC!programming, the driver
software is contained in a device driver which is loaded when the PC is
powered up. For compiled programs such as C, Pascal or Quick Basic, the
driver softwareis contained in linkablelibraries. For Windows programs,
theselibrariesare Dynamically Linked Librariesthat are loaded as needed
by the operating system.

2.3.1 488.2 Driver Features

The 488.2 Driver software has the following features:

» All required |EEE-488.2 controller protocol sand functionsfor
Quick Basic, Visual Basic for DOS, Professional Basic 7.1, C
and C++ DOS applications. A DLL provides |IEEE-488.2
support for MS Windows based applications running on Win-
dows 3.1, Windows 95 and Windows 98.

e 488-PC2 Driver provides 488.1 support for most interpretive
BASICsand libraries for Pascal.

e Standardized commands across all languages provide high
level easy to use command extensions for your program lan-
guage plustheability to generatelow level bus mnemonicsfor
custom commands.

e Automatic initialization of default values at power on.

* Include files for each language to minimize programming
effort.

» Timer functions for program delays or status checking.

» Interactive Keyboard Controller Programs for testing GPIB
devices or the 488-PC2 hardware.

* Throughout this manual, the term BASIC refersto Interpretive BASIC.

2-2

2.3.2 Supported Languages

Included 488-PC2 drivers support:
GW BASIC (Ver 3.11 and 3.22)
BASICA (Ver 3.11 and 3.22)
VectraBASIC (Ver 3.11 and 3.22)

Included libraries support:

DOS Languages.
Quick Basic (Ver 4.5)
Microsoft Professional BASIC (Ver 7.1)
Microsoft Visual Basic for DOS (Ver 1.0)
Borland Turbo C for DOS (Ver 3.0)
Microsoft Quick C (Ver 2.5)
Microsoft Pascal (Ver 4.0)
Borland Turbo PASCAL (Ver 4.0)

Windows 3.1 Languages:
Borland Turbo C++ for Windows 3.1
Microsoft Visual C++ (Ver 1.0 and 1.5) (16-bit programs)

Windows 95 and Windows 98 L anguages.
Borland C/C++ (Ver 2.0, 3.0 and 4.0)
Microsoft Visual C++ (Ver 6.0)
Microsoft Visual Basic for Windows (Ver 4.0, 16-bit DLL)
Microsoft Visual Basic for Windows (Ver 6.0, 32-bit DLL)

Note: QBASIC from Microsoft is the same as Quick Basic and it is not
supported.

2-3

24 |EEE-488 BUS SPECIFICATIONS

The GPIB Interface on the 488-PC2 conforms to the IEEE STD 488.1
specification. Driversaretristate devices, capable of driving up to 14 other
Bus compatible devices over 20 meters of cable. The connector is the
standard | EEE-488 24-pin connector with metric studs. Signal pin assign-
ments and a description of the GPIB bus's operation are provided in
Appendix Al. Thedatatransceiversinthe 488-PC2 will not cause latchup
in older GPIB devices.

241 Controller Functions

As an |EEE 488.2 Bus controller, the 488-PC2 performs AH1 and SH1
handshakes plus controller subsets C1 through C4, and C9 depending upon
theuser’ sprogram. Thesesubsetsinclude: singleand extended addresses,
servicerequests, remoteenabl e, devicetrigger, deviceclear, interfaceclear,
serial poll, paralel poll, pass control, and take control. This enables
messages to be transferred from

a) Computer to device(s)

b) Deviceto computer

¢) Deviceto device(s)

d) PCto PC, or PC to other controllers
TheControllersaddress 31 talk/listen primary addressabl e devicesand 930
secondary addressable devices. The 488-PC2 responds to its primary

address when acting as a device or when taking control.

The488-PC2 functions as | EEE-488.2 controller and performsthe follow-
ing protocols:

ALLSPOLL
FINDLSTN
FINDRQS
RESET

2-4

2.4.2 BusDevice Functions

As a device, the 488-PC2 becomes a transparent |EEE 488 Bus-to-PC
interfacewithAH1, SH1, T2, TEOL 2, LEO, SR1,RL2, PP1,DC1,DT1, CO
and E1 capabilities depending upon the user’ s program. When addressed
as alistener, the 488-PC2 inputs data bytes from the Bus and passes them
to the computer. When addressed as a talker, the 488-PC2 accepts data
bytes from the computer and handshakes them onto the 488 Bus. Data
transfer can either be under program control, or implemented as a block
transfer under DMA control.

The 488-PC2 will respond to a serial poll by outputting the data stored in

itsserial poll responseregister. With the exception of the DIO7 hit, the bit
pattern and meanings are user defined.

2-5

25 488-PC2 CARD SPECIFICATIONS
2.5.1 Architecture

The 488-PC2 card contains an NEC7210 |EEE 488 Bus Controller chip,
address decoding logic, DMA/Interrupt selection logic and a buffer for
sensing GPIB signal status. The 488-PC2 Bus controller chipiscontrolled
by sending it data and commands viathe PC's I/O Bus. The 488-PC2's
address control switchesletsyou set the 488-PC2’ s 1/O addressfrom 02E1
hex to 62E1 hex in 2000 hex increments (Default addressis02E1. The488-
PC2 card uses 9 separate 1/0 addresses to address and access its control
registers and the GPIB signal buffer.

BASIC programs that control the |IEEE 488 bus use a 16K byte memory
resident device driver to interface with the 488-PC2 card. Programs
written in other languages use loadable librariesthat link to the program at
run or compile time.

252 PClinterrupt

The 488-PC2 has a single, switch selectable interrupt level. Assignable
interrupt levelsare 2, 3, 5, and 7. Setting all switches to off disables the
hardware interrupts.

253 DMA

The 488-PC2 supports DMA data transfer in system controller, active

controller or deviceoperating modes. Switch selectable DMA channelsare
1,2, and 3 (default is 1). Setting all switches off disables DMA transfers.

2-6

25.4 DataTransfer Capability

Datatransfer rate under program control is proportional to the CPU speed
and processor type. Thisrate variesfrom a44 Kbytes/sec with the original
IBM PCto over 200 K bytes/second with a486 processor asshownin Table
2.1. Datatransfer rateusing DMA isrelatively constant at 240 K bytes/sec.
Maximum data block size for DMA transfersis 64 kbytes.

TABLE 2-1 488-PC2 TRANSFER RATES (BYTES/SEC)

CLOCK TRANSFER RATES

PC MODEL RATE NO DMA W/ DMA
IBM XT 477 MHz 445K 238K
386AT 20.0 MHz 160 K 204 K
486AT (Dx2) 66/33 MHz 210K 240K

255 Physical

Size One-half size PC card, 5 incheslong

PC Bus Compatible with PC/XT/AT and PS/2 models 25 and 30,

ISA and EISA buses.
Slot Fitsin any available PC slot
Power +5 0.2 Vdc at 500 mA max.

Connector |EEE 488 Bus Interface: Amphenol 57-20240 style with
metric lock studs

2-7

25.6 Certificationsand Approvals
Meets limitsfor Part 15, Class A of US FCC Docket 20780 and complies

with EEC Standards EN 55022 and 50082-1. CE Certificate of Compliance
reproduced in Figure 2-2.

c € Approved

Declaration of Conformity

Application of Council Directive(s)..........coovemeeerereercrererceenans 89/336/EEC
Standard(s) to which Conformity is Declared.............. EN 55022, EN 50082-1
Manufacturer’s Name ICS ELECTRONICS CORPORATION
Manufacturer’s Address 472 1,0S COCHES STREET

MILPITAS, CA 95035-5422

Importer’s Name

Importer’s Address

Type of equipment GPI B CONTROLLER
Model No. 488- PC2
Serial No. Thru Year of Manufacture 1995- 1996

I, the undersigned, hereby declare that the equipment specified above
conforms to the above Directive(s) and Standard(s)

Place /uu,'ﬂ,pdzﬁ-: Cd?,‘ma U4 /Z/ Prrda T
! (Sfznature)

Date /'t -447 Gl MER WA
(Full ame:)
Ay
(Position)

Figure2-2 488-PC2 CE Certificate of Compliance

2-8

26 ACCESSORIES

I CS providesthe following optional accessory items for use with the 488—
PC2 Controller Card.

Part No. Accessory

104705 Double shielded Bus Cablewith stackabl e bus connectors,
1/2 M long

104710 Double shielded Bus Cablewith stackabl e bus connectors,
1M long

104720 Double shielded Bus Cablewith stackabl e bus connectors,
2M long

104740 Double shielded Bus Cablewith stackabl e bus connectors,
4 M long

105705 Double shielded Bus Cable with a straight-in bus connec-
tor, 0.5 M long

105710 Double shielded Bus Cable with a straight-in bus connec-
tor, 1.0 M long

105720 Double shielded Bus Cable with a straight-in bus connec-
tor 2.0 M long

123077 Spare User's Manual

2-9

488.2 Driver

31 INTRODUCTION

This section describes ICS's 488.2 Driver's support for Windows 95 and
Windows 98, Windows 3.1, and support for DOS. This section aso
includes a description of the Command Set characteristics, Command Set
Quick Reference lists and selection criteria.

3.2 488.2 DRIVER WIN COMPONENTS

ICS's 488.2 Driver provides Win32 support for C/C++ and Visual Basic
applicationsusing the 488-PC2 Command Sets. Thefollowing paragraphs
describethe Driver's software components. Figures 3-1 and 3-2 show how
they interact to control the GPIB hardware.

3.2.1 Components

1. PC2W32.DLL - A 32-bitthunk DLL that implementsthe 488-PC2
Command Set for Windows 95 and 98.

2. PC2W16.DLL - A 16-bit intermediate DLL that implements the
488-PC2 Command Set for Windows 95 and 98.

3. PC2W.DLL - A 16-bit DLL that implementsthe 488-PC2 Com-
mand Set and controls the 488-PC2.

4. PC2W32.lib - A 32-hit library file with the 488.2 Driver func-
tions. Used for linking C/C++ programs with the
PC2wW32.dll.

5. PC2W.h -

6. PC2W32.bas -

7. PC2W .bas -

8. Global.bas -

9. Readme.doc -
Readme.txt -

C/C++ Language header file for accessing the
488.2 Driver functions

A Visua Basic file with program constants and
Command Set declarations for linking 32-bit ap-
plications to the 488-PC2 Command Set. Com-
bines PC2W.bas and Global.bas files for 32-bit
applications.

A Visua Basic file with program constants and
Command Set declarations for linking 16-bit ap-
plications to the 488-PC2 Command Set.

A Visua Basicfilewith programvariablesfor 16-
bit Applications.

A test files with file descriptions and late
information about the 488.2 Driver.

Win32 C Applications Win32 VB Applications
for 488-PC2 Cmd Set, for 488-PC2 Cmd Set

PC2W.h PC2W32.bas
PC2W32.lib

/ Windows Interface
W32.dIl

o
o/
N

PC2wW16.dll
pcC2w.dll

Figure3-1 Win 32 Components Organization for

Windows 95/98

3.2.2 32-Bit Applications

Figure 3-1 shows how thefileswork together to control the GPIB busfrom
32-bit Windowsapplications. ThePC2W.hor PC2W32.basheader filesare
included or linked with the appli cationto specify the 488.2 Driver constants
and define command syntax and variables. The PC2W32.libfilesallow C/
C++ applications to make callsto the PC2W32.dIl. Visual Basic applica-
tions make direct cals to the PC2W32.dll. PC2W32.dIl and PC2W16.dlI
are thunk layer DLLs that convert the 32-bit calls into 16-bit calls. The
PC2W.dIl interpretsthe 488-PC2 commandsto operatethe GPI B hardware.

Win16 C Applications Win16 VB Applications

for 488-PC2 Cmd Set, for 488-PC2 Cmd Set
PCZW.h PC2W.bas
PC2W.lib

\ / Windows Interface .

PC2w.dll

GPIB Hardware

Figure3-2 Win 16 Component Organization for Windows 3.1
or Windows 95

3.2.3 16-Bit Applications

Figure 3-1 shows how thefileswork together to control the GPIB busfrom
16-bit Windowsapplications. ThePC2W.hor PC2W32.basheader filesare
included or linked with the appli cationto specify the 488.2 Driver constants
and definecommand syntax and variables. The PC2W.libfilesallow the C/
C++ applicationsto make callstothe PC2W.dIl. Visual Basic applications
directly call the PC2W.dIl. The PC2W.dII interprets the 488-PC2 com-
mands and operates the GPIB hardware.

3.3 DOS Language Support

The 488.2 Driver has the following components for DOS Languages.

3.3.1 C/C++ Language Support
Libraries and header files that are linked to the C/C++ program.

1. PC2INC.H Header file for accessing the 488.2 Driver func-
tions

2. LMSCPC2.LIB Library for MS large memory model.

3. MMSCPC2.LIB Library for MS medium memory model.

4. SMSCPC2.LI1B Library for MS small memory model.

5. LMSCPC2.LIB Library for Borland large memory model.

6. MMSCPC2.LIB Library for Borland medium memory model.

7. SMSCPC2.L1B Library for Borland small memory model.

3.3.2 DOSQuick Basic/Professional Basic Support
Libraries and header files that are linked to the Quick Basic program.
1. PC2INCL.BAS Anincludefile for the 488.2 Driver functions

2. PC2COM.BAS An include file with the 488.2 Driver constants,
settings and variables.

3. PC2QBDOS.LIB 488.2 Driver library for making Quick Basic .exe
programs.

3. PC20QBDOS.QLB 488.2 Driver library for running programs in the
Quick Basic environment.

4. PC2QBDOS.OBJ 488.2 Driver library for making other libraries.

34

3.3.3 DOS Pascal Language Support

1. GPIB.TPU

2. GPIB.PAS

3. PC2TPDVR.OBJ

4. MSPC2.INC

5. PC2MSPDV.LIB

Library file with Turbo Pascal 488.1 function
cals.

GPIB.TPU sourcefile.

Object file with 488.1 functions for Turbo Pascal
programs.

Library file with MS Pascal 488.1 function calls.

Library file with MS Pascal 488.1 functions.

3.34 DOSBASIC Language Support

Following are loaded into memory at the start of the program.

1. ICSDECL.BAS

2. PC2-DRVR.BIN

3. LOADER.BIN

Sample BASIC program header file.
488-PC2BASIC Driver

Routine to generate pointers for BASIC driver
commands.

3.3.5 Utilitiesfor DOS and Windows

1. GPIBkybd.exe -

2. PC2wKybd.exe -

3. PC2_kybd.exe -

An interactive graphical control utility for Win-
dows 95/98 that lets a user communicate directly
with GPIB devices without having to write a
program.

A console mode control utility for Windows 3.1
that lets a user communicate directly with GPIB
devices without having to write a program.

An interactive control utility for DOS that lets a

user communicate directly with GPIB devices
without having to write a program.

35

34 DRIVER COMMANDS

Table 3-1 provides a brief listing of the 488.2 Driver commands and their
compatibility across languages and operating environments. Table 3-1
should only be used as a quick reference guide. Refer to the Command
Reference Section for acompletedescripti on of each command, itsrequired
parameters, parameter types, and examples. Thecommands arelistedwith
mixed case letters as they would be used in Compiled Basic, C or C++
programming for better legibility. For Interpretive BASIC programs, the
commands would be written as all capitals.

The Compatibility columns indicate which languages can use the com-
mand: P=PASCAL, B =BASIC, Q =Quick, Professional or Visual Basic,
C = C/C++ and W= Windows 3.1 or Windows 95 and 98.

TABLE 3-1488.2 DRIVER COMMANDS

MNEMONIC Compatibility DESCRIPTION
P/ B QC|W
ieAbort e|e| e || e Qutputsan|FC pulseto clear

al devices off the GPIB bus
and asserts ATN to take con-
trol of the bus.

ieAllSpoll o | e | ¢ | Performs|EEE 488.2 Seria Poll All

(AddrList, RespList) Devices protocol. Serial pollsall
listed bus devices and returns alist of
the results.

ieClose e | ¢ | | Cleansup driversand restores

system environment. Must be called
at end of program and beforeall ielnitg
except for the first ielnit.

ieDevClIr e o e e e Sends the selected device clear|
(DevAddr) command (SDC) to device(s) or the
universal device clear (DCL)
command to all devices.

ieDevice o | Installs a Bus device driver in
(DevAddr, DOSPort) place of LPTn or COMn.

TABLE 3-1488.2 DRIVER COMMANDS (CONT.)

MNEMONIC

Compatibility

P[BQ[C W

DESCRIPTION

ieEnter
DevAddr, InString)

ieEnter A
DevAddr, InString)

ieEnterB
DevAddr, InString)

ieEol (DevAddr,
DutEOL,
DutEOL Str,
nEOL,
NEOSByte)

ieErrPtr
IOErrCode,
OBytes)

eEventEnable
Addr, hwnd, wEvM as

eEventStat

eFindLstn (AddList,
ResultList)

eFindRQS (AddrList,

k)

Inputs data from bus device into
astring variable. String terminator
is specified by the EOL command.

Inputs data from bus device into
an array variable. Dataterminator
is specified by the EOL command.

Inputs data from bus device into
astring variable. Input is terminated
when the EOI line is detected

or InString isfull.

Sets input and output termina-

tors for the specified bus device.
Default output termination is CR LF
with EOI asserted during the LF.
Default input terminator is LF

or EOI line true.

Assigns variables to keep track
of bus transfer errors and count
of input/output string bytes.
Execute before other commands

Enables notification messages of
hardwareeventstobesent toaparticu-
lar window.

Functionreturnsaninteger that speci-
fieswhat event occurred:
1=SRQ, 2 = Time-out, 4 = Error.

Performs the IEEE 488.2 Find Lis-
tener protocol and returns alist of
found listeners

Performs the |EEE 488.2 Find
Device Requesting Service protocol
and returns the address of the first

TABLE 3-1488.2 DRIVER COMMANDS (CONT.)

MNEMONIC

Compatibility

P

B

Q

C

\Y

DESCRIPTION

eFindRQS cont'd

eGotoSthy

eGPIBStat

el nit
IOPort, MyAddr,
Setting)

eLlo

el ocal
DevAddr)

eOutput
DevAddr, OutString)

eOutputA
DevAddr, DataSeg,
ByteCnt)

eOutputB
DevAddr, OutString)

ePassCil
DevAddr)

device found requesting service and
itsstatus byteresponse. Returns 3131
if no device found that needs service.

Makes the 488-PC2 a Standby Con
troller and de-asserts ATN if the 488+
PC2 was an active controller.

Function reads the status of the GPIB
control and handshake lines. Returns
an integer value between 0 and 255.

Initializesthe488-PC2'shardware, sets
card's I/O port address, Bus address
and DMA/Interrupt/System Control
ler parameters.

Sendslocal lockout message (LLO) to)
all devices.

Sendsago-to-local message (GTL) toj
DevAddr. If Addr<-1or =31, thecard
clears the remote message (turns the

REN Bus line off)

Outputs a string to DevAddr. String
terminator is specified by the EOL
command.

Outputs datain an array to DevAddr.
Data terminator is specified by the
EOL command.

Outputs a string or binary data
to DevAddr. String or dataistermi
nated with EOI asserted on last byte.

Passes control to an inactive bus
controller at address DevAddr.

TABLE 3-1488.2 DRIVER COMMANDS (CONT.)

MNEMONIC Compatibility DESCRIPTION
PBRQI|ICW
iePPoll (PResp) e| o] o] o| ¢ Conductsaparallel poll of all config-
ured devices. Returnsa response
byte value (0-255)
iePPollC e| o] o] o| ¢ Configures DevAddr to respondto a

(DevAddr, ConfigBit)

iePPollU (DevAddr)

ieRemote (DevAddr)

ieReset (AddrList)

ieSend (CmdString)

ieServiceDisable
(ServCode)

paralel poll (trueor false) on line 0-7|
as specified in ConfigBit.
0-7 = False response on lines 0-7
8-15 = True response on lines 0-7

Sends DevAddr the parallel poll dis-

ablecommand. If Addr<--1or=31, dl
devices are sent the unconfigure com-
mand.

AddressesDevAddr tolistenand sendg
it the remote enable message by
setting REN true. If Addr<--1or 231,
then just the REN lineis set true.

Performsthe | EEE 488.2 Reset proto-
col on all devices and sends * RST
command to all listed devices.

Sends user specified Bus commands
or datato the Bus. CmdString isa
string of English-like Bus commandsg
and data.

e.g. (CMD="UNT LISTEN 4 SECO
DATA'T1™). ieSend mnemonicsand
commands arelisted in the Command
Reference section under the ieSend
command and described in Appendix|
Al

Function disables driver call to user's
program when specified service
event occurs.

TABLE 3-1488.2 DRIVER COMMANDS (CONT.)

MNEMONIC

Compatibility

P

B

Q

C

\Y

DESCRIPTION

ieServiceEnable
(ServCode, SRQServ
[, TOutServ[,ErrServ]]

ieSPall
(DevAddr, SResp)

ieSRQStat

ieStatus
(StatusCode, Status)

ieTakeCtl (Mode)

ieTimeOut (Time)

ieTrigger (DevAddr)

Function enables driver to call user
programs when specified service
event occurs.
Serv Codes are:

1=SRQ, 2 =Time-out, 4 = Error.
User programs are: SRQServ,
TOutServ and ErrServ.

Serial polls DevAddr. Returnsthe
response byte as value (0-255) .

Function returnsan integer O or 1 that|
specified thelogical state of the SRQ
line.

Reads status information about the
interfaceandthelast called command.
StatusCode specifies the information
type. Returnsvalue (0-255) in the
Status parameter.

Commandsthe 488-PC2 change from
a standby controller to an active con
troller, take control of the bus and
assert ATN. Mode selects control
method:

Mode = ASYNC, SYNC or EOI.

Sets the handshake timeout in milli
seconds (Time)
Time = O, infinite time-out
Time=1to 32767, time-out in ms.
Time=-1t0-32767, time-out in
(Time+65,536)ms.

Sendsthebus trigger command (GET)
toDevAddr. If Addr<-1or =31, sendd
the GET command to all listeners.

3-10

TABLE 3-1488.2 DRIVER COMMANDS (CONT.)

MNEMONIC Compatibility DESCRIPTION
PBIQ|CW
ieWaitSRQ o | Function suspendsprogram until SRQ
(SleepTime) is asserted or sleep time expires.

SleepTimeisin milliseconds. Func-
tionreturns SRQ statewhenreturning
1 = SRQ asserted, 0 = not asserted

TIME UTILITIES

msDelay(ms)

icsTimer

isTimeOut(msMark)

Suspends program execution for ms
milliseconds.

Reads high resolution system timer.
Returns number of 215 psec periods
since midnight.

Sets background time mark when firs
called. Later calls check to seeif
system time is greater than the time
mark. msMark isin milliseconds.

3-11

GPIB Programming

4.1 INTRODUCTION

This section describes how to use the 488.2 Drivers to write programs to
control GPIB devices, describes Visual Basic and C++ program examples,
and supporting Test and Measurement Application Programs.

4.2 BASIC GPIB PROGRAMMING TECHNIQUES

This section describes some basic GPIB programming concepts and is
intended asaguidefor anyone doing GPIB programmer. A new GPIB user
should read the description of the GPIB bus operation in Appendix Al
before proceeding. The concepts described below are general in nature.
Alwaysrefer to the selected Command Set Reference for the exact param-
eter definitions.

Also note that variable names used in the command examples are place-
holders and can be changed to make them more descriptive for your
program. Outstring$ can become CmdStr$, DV M Setup$ etc. Similarly,
InString$ can become Rdg$, OvenTemp$ etc. What is important is the
order of the variables and their definitions.

4.2.1 GPIB Program Outline

A typical GPIB program has the following steps:
1. Initialize the GPIB Controller Card and the bus.
2. Verify that the device(s) is (are) present.

3. Initialize the device(s) by sending it setup commands etc.
4. Read data or aresponse back from the device.

4-1

The good newsisthat most GPIB programs only use six to eight of the 42
commands available in the 488-PC2 command set. Once you have
mastered these few commands, you can make programs of any degree of
complexity and rarely ever need another command. Figure 4-1 shows a
typical test setup withtwoinstruments. It usesjust six 488-PC2 commands
to initialize the instruments, generate anal og outputs and to take readings.

In some cases, it may be necessary to check adevice's statusto seeif it has
completed atask or hasdataready beforereading datafromadevice. It may
al so be necessary to send adevice some special GPIB buscommandsto put
it in a configure mode. These actions are also covered in the following

paragraphs.

IEEE 488

4891 Power
Supply Programmer

IBM PC or Clone —_— —_—
with a 488-PC2 Card HP 3478A DVM

Figure4-1 A Small GPIB Test System
422 Device Addressing

The GPIB bus uses 32 addresses from 0 to 31. All GPIB devices are
addressed by a primary address between 0 to 30 so each deviceissetto a
unique address. Address 31 isthe Untalk or Unlisten address and is not a
device address. The GPIB Controller card is considered a bus device and
has its own bus address. |CS and Hewlett-Packard Controllers default to
address 21; National I nstrumentsand other controllersdefault to addressO.

Some devices use secondary addresses to address achannel or subfunction
inthe device or to escapeto asetup mode. Anexampleis|CS's4896 Quad
Serial Interface which uses secondary addressesto select a seria channel.
There are 31 possible secondary addresses, 0 to 30. Again, secondary
address 31 isnot used by adevice.

4-2

A Windows operating system can support multiple GPIB Controller Cards.
The GPIB Controller Card address is the CardID. In the 488-PC2 Com-
mand Set, thefirst CardID is 7, the second card is 6 etc.

The488-PC2 Command Set combinesthecard, deviceprimary addressand
device secondary addressinto asingle DevAddr variable. Theoverall form
of DevAddr for Windows environmentsis:

DevAddr = CardID + pp + [sS]
where[ss] istheoptional secondary address. Toaddressadeviceat primary
address 4,

DevAddr = 704
To address a 2nd channel at primary address 4,

DevAddr = 70402
For DOS programs, DevAddr reduces to:

DevAddr = pp + [sS]
where[ss] istheoptional secondary address. Toaddressadeviceat primary
address 4,

DevAddr = 4
To address a 2nd channel at primary address 4,

DevAddr = 402
The No Address concept is used when a command applies to al of the
devicesonthebus. A NoAddr constant has been predefined to simplify the
programming. Anexampleis

ieDevClr(DevAddr%)
sends the SDC command to the specified device.

ieDevClr(NoAddr%)
sends the Clear command to all devices on the bus who are addressed as

listeners.
4-3

4.2.3 Command Calling Conventions

For Visual Basic, C and Pascal, the 488-PC2 commands return avariable
that indicates if the command was correctly executed. 1nthese languages,
the 488-PC2 commands are called by equating them with an error variable
i.e.

ioerr% =ielnit(IOPort, MyAddr, Setting)

Theerror variable can be checked in astandard routineto display any error
conditions to the program operator.

In Quick Basic, Professional Basic and other interpreted languages, the
commands do not return a status variable. An exampleis:

CALL ielnit(IOPort, MyAddr, Setting)
In Windows programs, the command syntax often includes an additional
variable for the command length or number of parametersin alist. This
extravariableissimply dueto differences between the DOS and Windows
calling conventions. An exampleisthe ieOutput command:
For Windows:

ioerr% = ieOutput(DevAddr, OutString$, L)
For DOS:

CALL ieOutput(DevAddr, OutString$)
The following paragraphs show how to initialize, command and control

GPIB devices. Refer to the Command Referencefor the correct syntax and
for command examples in your programming language.

4-4

4.2.4 Initializing the Controller and GPIB Bus

The 488-PC2 Card isinitialized to be sure that it is the System Controller
and isthe Controller-in-charge of thebus. Thebusisinitialized to be sure
that all of the devicesarein anon-addressed state after their power turn-on.
This is done by having the GPIB Controller issue an Interface Clear
command (IFC pulse) and assertthe REN line. Itisalsoagoodideato check
or set the bus timeout. The bus timeout is the amount of time that the
programwill wait for adeviceto respond to acommand before proceeding.
In the 488-PC2 Command Set, thisis done with the following commands:

ioerr% =ielnit(IOPort, MyAddr, Setting)

'initializes the Driver
ioerr% =ieAbort 'sends IFC, sets REN on
ioerr% = ieTimeOut (Time) 'sets bus timeout

The 488-PC2 Command Set returns an error status value in the ioerr%
variable when it is finished. If the value is zero, the command was
successfully executed. A nonzero value means the command was not
executed correctly and that the device probably was not thereand/or did not
receive the Output String.

425 Sending Datato a Device

Dataor device commands are normally sent to adevice asstrings of ASCI|
characters. This could be the setup commandsto aDVM so it knows the
type of reading to take, to changing the baud rate in a GPIB-to-Serial
converter, or to output avalue or datato a device.

In the 488-PC2 Command Set, ASCII datais sent by first specifying the
string and then calling the ieOutput command:

Windows example:

Outstring$ = "Command to be sent"
L = Len(Outstring$)
ioerr% = ieOutput(DevAddr, OutString$, L)

Quick Basic example:

Outstring$ = "Command to be sent”
Call = ieOutput(DevAddr, OutString$)

4-5

The IEEE 488.2 Standard states that all command strings need to be
terminated with alinefeed character or by asserting the EOI line on thelast
character. 1CS's 488.2 Driver defaults so that ieOutput automatically
terminates the output string by appending a LF and asserting EOI. The
termination can be changed for a specified device with the ieEOL com-
mand. If the output dataisbinary data, use theieOutputB command which
terminates the output by only asserting EOI on the last character.

4.2.6 Reading Datafrom a Device

ASCI| datastringsareread from adeviceby first specifying anempty string
and then reading the datainto the string. Dataisread until aterminator is
found or thedefined Input stringisfull. Typical GPIB messageterminators
arelinefeed or EOI asserted. Anexampleinthe488-PC2 Command Setis:

Instring$ = String$(Lin, 32) fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

whereLinisthelength of theinput buffer. The 488-PC2 iel nput command
defaultsto terminating when alinefeed or EQOI issensed. For binary data,
use theielnputB command. TheieEOL command can be used to change
the terminator for a specific device.

4.2.7 ClearingaDevice

Some deviceshave buffersthat accumul ate unwanted dataand it occasion-
ally becomesnecessary to clear out theold dataor return adeviceto aknown
condition. Thisisdone by sending the devicethe Device Clear Command.
In the 488-PC2 Command Set thisis done by:

ioerr% = ieDevClr(DevAddr)
4.2.8 Reading Device Status

Sometimesitisdesirableto read the device's Status Register to seeif it has
data, has a problem or has completed sometask. |EEE-488 devices report
their status, Status Regi ster contents, inresponseto Serial polls. Seria polls
provideupto 8 bitsof informationfrom asingledeviceand cana soidentify
adevicethat hasregquested service. Consult thedevice'sinstruction manual
for the meaning of the bits in its Status Register. |EEE-488.2 compliant
devicesalsoreport their statusinresponsetothe* STB?query. (Seesection

4-6

A1.2 in the Appendix for information about the 488.2 mandated Status
Reporting Structure). Inthe 488-PC2 Command Set, the status register is
serial polled and the value placed in the DevStatus variable by:

DevStatus = ieSPoll(DevAddr)
To usethe *STB? query do:

Outstring$ = "*STB?"

L = Len(Outstring$)

ioerr% = ieOutput(DevAddr, OutString$, L)

Instring$ = String$(Lin, 32) ‘fills the string with spaces
ioerr% = ieEnter(DevAddr, Instring$, Lin)

4.29 Sending Custom Bus Commandsto a Device

Sometimes it is necessary to send custom Bus Commands to a device to
addressadeviceasataker or asalistener or to enter aspecia configuration
mode. Bus commands are single character commands that are sent to a
devicewith ATN on. Referto Table A-1inthe Appendix for alist of these
commands.

Inthe 488-PC2 Command Set, thisis done by specifying acommand string
and then calling theieSend command. TheieSend command interpretsthe
mnemonics and converts them into GPIB bus bytes. In the following
example, CmdStr$ is set to the escape sequence used with some of ICS's
miniboxes to put them in their command mode. Consult the Command
Reference for the Send command mnemonics.

CmdsStr$ ="UNL LISTEN 4 UNL LISTEN 4 UNL"
'device address = 4

L =Len (CmdStr$)

ioerr% = ieSend(DevAddr, CmdsStr$, L)

4.2.10 Setting Timeouts

Due to the nature of the Windows environment, if a user sets the bus
handshake timeoutstoo short, another application could use up the all otted
time, thereby creating false errors. If the user sets the handshake timeouts
too long or to infinity, then a bus problem could hang the system up in the
GPIB application. The recommendation isto use amoderate timeout oif 1
to 3 seconds. Pressthe ESC key to exit the suspending loop.

4-7

4.2.11 Using Multiple 488-PC2 Cards

Even though the 488.2 Driver supports multiple cards (and GPIB buses),
thereisno hardware or softwarelocking. Users should take careto not run
multiple applications that access the same 488-PC2 card at the sametime.

4.2.12 Error Reporting and Handling

Visual Basic, C/C++ and Pascal programs normally call the 488.2 Driver
commandsby equating themto an error variable. The488.2 Driver returns
azerointheerror variableif thereisnoerror. Therecommended procedure
isfor the programmer to call astandard routineto test the error variableand
to take some corrective action for anonzero value. The example function
beeps and displays an error message.

ioerr% = ieEnter(DVM, Rdg$, Len(Rdg$))
ProcessError (ioerr%)

ProcessErrorisafunctionthat hasbeen added to the (General) Objectinthe
Visual Basic form. Seethe example Visual Basic programs.

Private Sub ProcessError(ErrCode%)
Select Case ErrCode%
Case 0
txtError.Text ="
Case 1
txtError.Text = “Device Timeout!”
Case 2
txtError.Text =*7210 Error!”
Case 3
txtError.Text = “Non-System Controller Error!”
Case 4
txtError.Text = “Error: Wrong parameter!”
Case 5
txtError.Text = “Ctrl-Brk pressed?”
Case 6
txtError.Text = “Can’t allocate DMA buffer”
Case 7
txtError.Text = “Can’t find RQS device”
End Select
If txtError.Text <>*“" Then
Beep
Tdelay (0.5)
End If

End Sub

4-8

4.3 |EEE 488.2 PROGRAMMING AND PROTOCOLS

The |EEE-488.2 Standard standardized the datatransfer protocol between
the GPIB Controller and devices, added an expanded Status Reporting
Structureto devices, added aset of Common Commandsthat adevice must
respond to and added Controller protocols for handling multiple devices.
These changes are described in paragraph A1.2 of the Appendix.

The expanded reporting structure in |EEE-488.2 devices supplies addi-
tional information about the device'sstatus. Thisadditional informationis
contained in extrastatus registerswhose conditions are summarized in bits
inthe existing Status Register. The Common Commands set bitsin enable
registersso aon condition of abit will bereportedinthe StatusRegister and
cangenerateaSRQ. Review your device'smanual for specificinformation
on its capabilities before programming the device.

The Common Command set simplifies the GPIB programmer's job since
you can expect any IEEE-488.2 compatible device to respond to the
Common Commands and to behave in a defined manner.

4.3.1 Confirming a Device's Presence

| EEE 488.2 compatibledevicesrespond tothe* IDN?query with aresponse
(upto 72 characterslong) that identifiesthe device, its serial number and
revison. This query-response is a good way to verify that the device is
available to your system when starting a program.

A Windows exampleis:

CmdStr$ = "*IDN?"

L = Len$(CmdStr$)

ioerr% = ieOutput(DevAddr, CmdsStr$, L)
Rdg$ = String(100, 32)

ioerr% = ieEnter(DevAddr, Rdg$, 100)

4.3.2 Finding Devices

ThelEEE-488.2 FindL stn Protocol returnsalist of all activedevicesonthe
bus that can be addressed aslisteners. FindLstn creates alist that then can
be used by the other protocols to perform serial polls or to reset all of the
devices on the bus.

4-9

In the 488-PC2 Command Set, the user defines a list of addresses to be
checked and FindLstn returns alist of found addresses.

FORI=0to 30 ‘generates an AddrList
AddrList(l) = (Card# * 100 + 1)

NEXT I

numbDevices = 31 'sets number of devices

ioerr% = ieFindLstn(AddrList, numDevices, ResultList)

CAUTION
Presence of a device on the bus that handshakes all data
bytes such as a bus analyzer, bus extender, bus expanders
or alisten-only device will cause the ieFindLstn command
tofind all possible device addresses. Inthiscase, the user should
supply a list of the actual devices on the bus, not all possible
devices, before executing the ieAllSpoll, ieFindRQS or ieReset
commands.

RECOMMENDATION
Set the timeout to < 500 milliseconds when using the 488.2
protocolswith large deviceliststo prevent unnecessary program
slowdowns.

The user should read the address list after executing the ieFindLstn
command to verify presence of all known devices and the absence of any
phantom device addresses. Refer to the Command Reference Section for
detailedinformationontheaddresslist format and for directionson passing
the address list to the 488.2 Driver.

4.4 ADVANCED PROGRAMMING NOTES

This section covers advanced programming concepts that do not apply to

4-10

most GPIB bus applications.
4.4.1 Passing Control

Passing control from one controller to another controller, lets the second
controller take charge of al of the devices on the Bus. However, only the
system controller (thecontroller in chargeat power turn-on) can control the
IFC and REN lines. Passing contral is performed by addressing the new
controller asatalker and sending it the take control (TCT) command. The
following Basic example shows how to pass control to a controller at
address 22.

REM PASSES CONTROL TO ADDR 22
C$="“UNL TALK 22 TCT" ‘COMMAND STRING
CALL ieSend (C$)

Compiled Basic and C language programs can use the iePassCtl command
to pass control to another controller. An example of itsusefor C is:

DevAddr = 22;
ioerr%=iePassCtl(DevAddr);

4.42 Direct Memory Access Data Transfer

Direct memory access (DMA) improves system performance in slow
computers by allowing external devicesto directly transfer information to
or from the system memory without processing or program intervention.
Newer high-speed processors have eliminated the DMA speed advantage.
See Table 2-1.

With DMA transfers, any memory location can source datafor the DMA
transfer and any read-write memory location can receive data. The 488-
PC2 data transfer can be programmed to proceed with or without DMA.
When you use DMA, the 488-PC2 provides a number of unique features.
1) The ability to run application programs and DMA simultaneously.

2) Selection of two DMA operating modes.

4-11

3) The ability to run IEEE-488 DMA and disk DMA simultaneously.

4) The ability to continuously transmit or receive data blocks of up to
64K bytes without processor overhead.

443 488-PC2DMA Operations

The 488-PC2 DMA settings alows you to choose from three of the four
possible DMA channels. BitsOand 1intheielnit Setting parameter enable
DMA datatransfer and select the DMA channel. Refer to Section 1.7.3to
select aDMA channel.

The488.2 Driverssupport single byteand block transfer operating modes.
Insingle-byte-transfer mode, the DM A chip and the system processor share
control of the system bus. This allows both DMA and CPU processing to
continuesimultaneously. Inblock-transfer mode, transfersare activated by
areguest for serviceand continue until the number of bytes specified by the
programmer aretransferred. 1n block-transfer mode, control of the system
bus is returned to the microprocessor only after all datais transferred.

Demand-transfer mode and Cascade mode are not supported by the 488-
PC2. The488.2 Driversdisabletheauto-initializationfunction and useonly
the address register increment direction of the DMA controller because of
the nature of GPIB data transfer.

Bit 12 of the Setting parameter in the ielnit command determines the
handshake speed of the 488-PC2' s GPIB interface chip. Setting the bit to
“0" selectsthe dlower | EEE 488 Bushandshaketimesfor deviceswith open
collector drivers (Subset E1). Settingthebitto“1” shortensthesetimesfor
devices with tristate drivers (Subset E2) and speeds up the data transfer.

CAUTION
Using high speed data transfer with open collector
drivers will result in data errors.

Bit 14 of the ielnit command Setting parameter determines the DMA

operating mode. Settingthebitto“0” letsthe DMA operatein single-byte-
transfer mode for low DMA rate and high CPU throughput. Setting the bit

4-12

to“1” letsthe DMA operatein block-transfer modefor high DMA rateand
low CPU throughput.

Bit 15 of theiel nit command Setting parameter determinesthe sequence of
driver to handleaDMA. When bit 15issetto“0”, the driver waitsfor the
completion of DMA before it goes further. When bit 15isset to “1”, the
driver initializes the DMA and then goes away. It isalso called BACK-
GROUND operation. When data transfer is related to other subsequent
commands, BACKGROUND operation cannot be used.

The 488-PC2 s DMA operation is quite transparent. Once you select the
DMA made by calling theielnit routine, all further datatransfer proceeds
in this mode. However, when you select block-transfer mode, the DMA
channel 0 memory refresh may be blocked long enough to corrupt RAM
memory content. Do not use block-transfer mode unless you have confi-
dence that the data transfer will be completed within the time limits of
memory refresh.

When using background operation, the CPU does not monitor the data
transfer. The data string can be terminated by byte count only. Y ou must
then handle the dataformat problem. Itissafeto use DMA insingle-byte-
transfer and non-background operation mode (the default condition). Use
of the other modes is not recommended.

Program examples showing how to use DMA datatransfersareprovidedin
the language directories on the 488-PC2 DOS Driver Disk.

444 Usingthe PC asa Device

There aretimeswhen it isdesirable to connect aPC to aGPIB Busand yet
not be abus controller. Examples of this are;

1 Using a PC as a stand alone data acquisition unit where it reports
to another computer. Typical applications are engineering work
stations and factory test stands.

2. Using the GPIB interface as a data transfer network between

computers. Onecomputer isprogrammed asthebuscontroller, the
other ones as bus devices.

4-13

4.45 Device Program Considerations

Themajor program changesto using the 488-PC2 card asadeviceinterface
are modifying the card’ sinitialization and then making provisions in the
program to input data or commands from the Bus controller. The ielnit
statement uses three parameters. |OPort%, MyAddr% and Setting%.

The 10Port% address is the same regardless of whether the card will be a
controller or adevice.

The MyAddr% parameter should be set to the address assigned to the PC as
aBusdevice. Bussystem controllers normally use addresses 0 or 21 (HP
and ICS default to 21). Alternate or additional Bus controllers normally
takethe next higher addressesi.e. 1 or 22. Busdevicesareassigned unused
Bus addresses between 0 and 30, i.e., address 4.

The Setting% parameter needs to be changed to reflect the non-system
controller use of the488-PC2 card. Bit 5 must be set onfor operationinthe
non-controller mode. Bit 12 may beset onfor high speed handshakesor | eft
off for lower speed handshakes. |f the Bus controller usestristate drivers,
bit 12 should be set on.

An ieErrPtr command should be executed immediately after the ielnit
command. TheieErrPtr command assignstwo variables for error number
and 1/0 byte count. AnieEOL command should be executed next to set up
theinput and output terminatorsthat will be used for datatransferswith the
BusController. Y oumay alsowant tolengthenthe 488-PC2’ sdefault time-
out period to avoid timing out in case the Bus controller or some other
device slows down the Bus.

Sample Device programs are given in the language directories.

4.5 PROGRAM EXAMPLES

45.1 Visual Basic Examples

4-14

Three Microsoft Visual Basic 4.0 example programs are included in the
ICS-win directory. Two of the programs are PC2Cmd and PC2Cmd32.
Both command programsare simpleinteractive programsthat give the user
control of any GPIB device and demonstrate a wide selection of GPIB
commands. The third program, VBdemo, is a simple test program that
operates two instruments. Visual Basic 4.0 allows both 16 and 32-bit
program examples. Visual Basic 5.0 and later only support 32-bit pro-
grams. Contact ICSisyou have a problem running the examples on later
versions of Visual Basic.

Each program includes an executable version and the source files for the
Visual Basic formsaswell astheincluded .basfiles. Thisway you cantry
the programs out and then examine their contents for example usage of a
particular command.

Wiegnal Hazne Lommansd Piooge s
Current Address
4

Change Addresz It e 4067 Cmds

GFBE Bus Commands

IFC Sernal

I]mrEi| Pall | Trigger | Enter | Dt puk | Gend |‘

Emlai Dhlipal | amssand
i T Dkay b
send

Commarnd Hespones

Figure4-2 Main Form for PC2Cmd32

PC2Cmd32-ts-a-32-bH—\sual-Basie—4-0-example-usihg-the488-RPC2
command set. PC2Cmd is a 16-bit, Visua Basic example using the 488-
PC2 command set. Both programs demonstrate how to use alarge number

4-15

of the 488-PC2 commands in Visual Basic. The examples can also be
extrapolated into Quick Basic, Professional Basic or C.

Figure 4.2 showsthe main form for the programs with all buttons enabl ed.
When the program starts, only the Initialize and Exit buttons are enabl ed.
When the user clicks Initialize, the GPIB REN lineis asserted and IFC is
pulsed. If the GPIB hardware responds correctly, the remaining program
buttons are enabled. To change the address, enter a new value in the
Address box (in the upper lefthand corner) and click Set. The remaining
buttons invoke a unique command each time they are pressed.

Tooutput amessageto adevice, theuser clickson the Output buttonto open
atext message box. Type the output message in the text message box and
click Okay to send the message. Figure 4-2 shows how the form appears
with *idn? in the Output Message box, just before clicking Okay. Click
Enter to read the response back from the device.

w. 488 7 Commands and Quesies

- Common Command Dusier

‘DT *3TE7? “BAE? “EGAT "ESET L5 |

4082 Protoools

Aeset Find Q5 | All5poll |

Command Aeaponse

Figure4-3 PC2Cmd32 488.2 Form

The 488.2 button causes 488.2 Form to appear asshownin Figure4-3. The
488.2 Form has a selection of IEEE-488.2 commands. Each button in the
upper row of the form causes an IEEéE—488.2 command to occur. Each

button in the lower row executes an | EEE-488.2 controller protocol.

The user can examine or modify the source files to make his own Visual
Basic project. The recommended method isto copy al of the files but the
project files(.vbp and .exe) filesto another directory. Createa new Visua
Basic project and use Visual Basicto add the copiedfilestothe new project.
There they can be edited, copied or later discarded.

Thethird Visual Basic example, VBdemo, operatesan ICS Model 4861 to

generate analog voltages and inputs readings from a Hewlett-Packard
DVM. Figure 4-4 shows the equipment setup.

IEEE 488

Vout

4861 Power
Supply Programmer

. . =Tl
Intel type PC =R
with 488-PCI Card HP 3478A DVM

Figure4-4 VBdemo Program Setup

The program hasonly two simpleforms. Thelnitialize button onthemain
formsinitializesthe 488-PC2 card, the GPIB bus and theinstruments. The
Run buttonisan eleven step |oop that commandsthe 4861 to set and output
voltage and then enters areading from the DVM. The program calcul ates
the differencesbetween the commanded valueand thereading. Theresults
aredisplayed onthemainform. Theaddr formisused to changethedevice
address settings.

452 Visual C++ Example

A Microsoft Visual C++ 5 example program isincluded inthe ICS_GPIB

4-17

directory. The programiscaled VC5 _demo and includes an .exefile, the
mak and all of the sourcefiles. Thisletsthe C programmer run the program
and later recompile it on his computer.

VX5 _demo isasimple application that writes messages to and reads data
back fromadeviceat address4. It wasbuilt asaMicrosoft Foundation Class
program following the instructions from "Inside Visual C++" by David J..
Kruglinski at Microsoft Press. Chapters 1 through 6 and 22 provide the
basicinstructionsfor preparing Visua C++ programs. The user should not
spend too much time studying the source code files as the Foundation
Wizard added most of the code. Theimportant partsarethe GPIB callsand
the handling of the responses.

Check ICS's web site at http://www.icselect.com for a future application
note on building aVisual C++ programs.

4-18

DOS Language Reference

51 INTRODUCTION

Thissection explainshow to install and usethe 488.2 Driver routineswith
DOS programming languages. This section builds on Section 4 which
covered GPIB Programming concepts by adding uniqueinstructionsfor the
DOS applications.

52 INTERPRETIVE BASIC PROGRAMMING

Thissection describeshow to usethe 488.2 Driversfor Interpretive BASIC
programming with the 488-PC2 Card. Theword BASIC when usedinthis
manual refers to Interpretive BASIC languages or programs. The 488.2
Driver supports Microsoft's GW BASIC, IBM's BASICA and certain
versions of HP'sVectraBASIC. Refer to section 2.3.3 for the supported
language versions.

5.21 BASIC Filesand Programs

All of the488.2 Driver BASIC Driver filesand demo programs arelocated
inthe BASIC directory on the 488-PC2 DOS Driver Disk. Table4-1lists
the files supplied to install and run the BASIC Drivers.

5.2.2 Ingtallingthe BASIC Drivers

Beforeprogrammingin BASIC, you haveto copy theBASIC Driver toyour
work disk. Normally thisis adirectory on your hard disk. The 488-PC2
DOS Driver Disk contains an INSTALL program that copies the BASIC
driversto your system for you.

5

TABLE 4-1 BASIC DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INS.COM 488-PC2 Card installation program.

PC2TEST.COM 488-PC2 Card test program.

INSTALL.BAT BASIC Driver and files installation routine.

DIRGEN.BAT Creates new directory during BASIC driver in-
stallation routine.

PC2-DRVR.BIN 488-PC2 BASIC Driver.

LOADER.BIN Routine that provides BASIC programs with
pointers to BASIC Driver commands.

ICSDECL.BAS Sample BASIC program header.

PC2BDEMO.BAS Demo program shows output and enter com-
mands.

PC23478A.BAS Demo program executesvariouscommandsfrom
amenu. WorkswithHP 3478A DV M or any bus
device.

TEST94.BAS Demo Programthat sendsstringstotheserial and
GPIB ports.

TouseINSTALL:

1

Be surethat you have made abackup copy of ICS'soriginal disk as
described in paragraph 1.5 and are working from the copy.

Boot up your computer and type CD\ to get to theroot directory. If
you arein DOSSHELL, select the root directory.

Insert the copy disk into your floppy disk drive.
Touse INSTALL fromdrive A, type

>a:\ BASIC\INSTALL C:

5-2

where 'd isthe letter for your floppy drive.

4. ThelINSTALL routinewill ask you for the name of thedirectory to
createforthe488 Drivers. Enter PC2 asthedefault directory name.

The following files are copied to your system:
PC2INS.COM
PC2TEST.COM
PC2-DRVR.BIN
LOADER.BIN
ICSDECL.BAS
README.DOC

5. Attheendof theinstallation, theINSTALL Routinewill ask if you
have a488-PC2 card installed. If you answer y (yes), the program
will verify the PC2 Card switch settings.

6. Remove the PC2 Driver disk.
5.2.3 Programmingin Interpreted BASIC

For BASIC programming, thedriver isimplemented asaseriesof assembly
language subroutine calls. Each subroutine performs a single GPIB
function such asoutputting data, i nputting data, conducting aserial poll, etc.
Although these routines are scattered throughout the device driver, their
starting addresses are all located in a short table at the beginning of the
driver. To accessthe subroutines, your program needsto include the setup
instructionsfromthel CSDECL .BA Sfileat the beginning of your program.

The set up instructions use the BLOAD statement to load the assembly
routine LOADER.BIN intointerpretive BASIC'slow memory space. This
routine, when called, will return the pointers to GPIB interface routines
located within the GPIB device driver. The next statement isacall to the
loaded assembly routine with the pointersto theinterfacefunctions. Refer
to your BASIC's User Manual for in-depth explanation of the BLOAD
command and its usage.

eg.
10 CLEAR 59747 : INIT1=59747! : BLOAD
"LOADER.BIN", INIT1

20 CALL INITL (IEINIT, IEOUTPUT, IEENTER,
IEABORT, IEEOL, IEDEVCLR, IELLO, IELOCAL,
IEPOLL, IEPOLLC, IEPOLLU, IEREMOTE, IESEND,
IESPOLL, IESTATUS, IETIMEOUT, IETRIGGER,
IEENTERA, IEOUTPUTA, IEDEVICE, IEERRPTR)

30 INIT2=INIT1+3

40 CALL INIT2(IEREV)

There are several ways to combine your application program with
ICSDECL.BAS:

— Write your program, starting at line 100 or higher and then merge
ICSDECL.BASintoit. When ready to merge type

>merge" ICSDECL"

Y ou can save the combined program under your application program
name by typing:

> save " new program name"

— Or start with acopy of ICSDECL.BAS and add your application onto
it. To start type:

>|oad "ICSDECL"

To avoid overwriting ICSDECL .BAS, immediately execute a save to
the new file name by typing:

> save " new program name"

Enter your new program statementsat line 100 or higher. When done save
as the file as the "new program file" name. The BASIC program should
have an Initialization section to initialize the 488-PC2 Card and the GPIB
busand aMain section with themain body of code. Follow theinstructions
in Section 3 and the examplesincludeinthe BASIC directory whenwriting
your program.

54

5.24 UsingInterruptsin BASIC

The488-PC2 hasthe capability tointerrupt the PC's processor when certain
events happen. However, Microsoft BASICin MS-DOS only providesfor
interrupts from the keyboard, the light pen, the communication port, the
game port and on BASIC errors. To usetheinterrupt capability in BASIC,
the 488 Drivers replace Function Key 19 and 20 interruptsand add an error
code to inform BASIC that there is an interrupt from the GPIB interface.
When theseinterruptsare enabled, Function Keys 19 and 20 cannot be used
intheir normal mode or the program will be confused. The three 488-PC2
interrupts are:

TABLE 5-2 PC2BASIC INTERRUPTS

Type Interrupt
ERROR Error. 488-PC2 firmware detects an error. The error number
is ERR-128.

The error codes are:

Code Error

0 None

1 Handshake Timeout

2 Interface Error

3 Called IEABORT when the 488-PC2 is not the system
controller

4 Invalid command parameters.

F19 Timeout. The GPIB handshake is hung or
exceeds the timeout value.

F20 SRQ. The GPIB SRQ lineisbeing pulled low by a
device.

The Setting% default value of 0 disablesall threeinterrupts. To enablethe
interrupts, you must set the appropriate Setting% bitsto 1 when calling the
[EINIT routine.

Setting Bit PC2 Interrupt

9 SRQ
10 Timeout
11 Error

The BASIC syntax for the interrupt traps are:

ON KEY (20) GOTO 100 'Handle SRQ
ON KEY (19) GOTO 200 '‘Handle Timeout
ON ERROR GOTO 300 ‘Handle Error

Note - The interrupt handling of the 488-PC2's software is written for
BASICA Version 3.00. Since other BASIC versions may have different
trapsfor the Function Keys and different address of error number, the 488-
PC2 GPIB interrupt handling routines may not work for different versions
of BASIC. Check your BASIC manual for the trapping and error address
compatibility before using the interrupts

5-6

5.3 QUICK BASIC PROGRAMMING

Thissection describeshow to usethe488.2 Driver librariesfor Quick Basic
programming with the 488-PC2 Card. The sameinstructionsalso apply to
the other compiled Basic languages - Professional Basic and Visual Basic
for DOS.

5.3.1 Filesand Programs

All of the Quick Basic files and Demo programs are located in the QB
directory on the 488 Driver Disk. Visual Basic for DOSfiles are located
inthe VBDOS directory. Professional Basic filesare located in the PDS7
directory. The directoriesinclude libraries which are linked to the user's
Basic program at the compiletime. The libraries contain all of the |IEEE-
488.2 commands and protocols.

The QB directory also containstwo 'include’ fileswhichreferenceall of the
library file commands, globa variables and default values. The QB
directory also includes three demo programs which show the user how to
control instruments, how to useinterrupts and how to program the PC asa
device. Table 5-3 listsall of the filesin the QB directory.

5.3.2 Ingalling the Quick Basic Libraries

Before programming in Quick Basic, you have to copy the Quick Basic
library filesto your working directory. Normally thisisadirectory on your
hard disk. The488-PC2 DOS Driver Disk containsan INSTALL program
that copies the necessary library filesto your system for you.

TouseINSTALL:

1. Make abackup copy of ICSs original disk as described in para-
graph 1.7 and you are working from the copy.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing Quick Basic directory, type CD
directorynameto get to the Quick Basic directory. If you arein
DOSSHELL, select the Quick Basic directory.

2. Insert the copy disk into your floppy disk drive.

S5-7

TABLE5-3 QB DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INCL.BAS Aninclude file that contains all of the 488 Driver
declarations.

PC2COM.BAS Aninclude file that contains the Interface default
contents, settings and common variables.

PC20QBDOS.LIB 488 Driver library for making Quick Basic *.EXE
programs.

PC20BDOS.QLB 488 Driver library for running programs in the
Quick Basic environment.

PC20QBDOS.0OBJ 488 Drivers for creating other libraries.

PC20BDEM.BAS*

TST4891.BAS*

PC20QBINT.BAS

EVENTTST.BAS*

README.DOC

Demo program that shows output and enter com-
mands.

Advanced version of PC2QBDEMO.

Demo programthat showswhoto use SRQstoread
data.

Demo programthat showshow towriteaninterrupt
handler and test for SRQ, Error or Timeout inter-
rupts.

QB Directory readmefile.

* .EXE and .OBJ program versions are included on the disk.

3. Toinstal thefilesfrom drive A type
>a:\QB\INSTALL C: where'a isthe floppy disk drive.
4. ThelINSTALL routinewill ask you for the name of thedirectory it

will create for the library files. Enter PC2QB as the default
directory name.

5.

6.

533

The following files are copied to your system:

PC20BDOS.LIB }

PC20QBDOS.QLB Quick Basic library files.
PC20BD0OS.0BJ

PC2INCL.BAS Include file modules that contains
PC2COM.BAS all of thesubroutines, and global vari-

ables shared between the main mod-
ule and the libraries.
README.DOC Documentation file.
If you want to use or run any of the same programs on your hard
disk, they can be copied at thistime. To copy afile to your new
directory type
>copy a:\QB\filename c:\QB\PC2QB\
where PC20B is your new directory name.

When done, remove the 488.2 Driver Disk.

Programming in Quick BASIC

Theeasiest way toprogramin Quick BasicistouseMicrosoft'sQuick Basic
editor. Start the editor by typing QB. DOSSHELL users double click on
the QB.EXE file. A typical Quick Basic program has the following
organization:

COMMENTSAND TITLE

SUBROUTINE DECLARATIONS
INCLUDE STATEMENTS

VARIABLE DEFINITIONS AND VALUES
PROGRAM STATEMENTSAND CALLS
SUBROUTINES (IF ANY)

END

The easiest way to do a Quick Basic program isto open or copy one of the
supplied demo programs (such as TST4891.BAS), rename it by doing a
'save-as’ and then modify it. This gives you the structure of an existing
program and will takes care of the include files and declarations.

59

534 Declarationsand Includes

Quick Basic uses declarations at the beginning of a program to reference
subroutines. A typical declarationis

DECLARE SUB ieEnter (DEVADDR%, INSTRINGS)

There must be a separate declaration statement for each subroutine or
library command used in the program. To save you having to enter
individual declarations in each program, the 488 Driver provides two
include files which contains the declarations for all of the PC2 IEEE-488
commands and global variables. The Quick Basic commands for linking
these include files with your program are:

'$SINCLUDE: 'PC2INCL.BAS'
'$INCLUDE: 'PC2COM.BAS'

Theinclude statement starts with a single quote mark or REM and should
be the first statement in your program after declarations and variable
definitions. Because PC2COM.BAS defines global variables, it is best to
place declaration statementsfor other subroutines beforethe aboveinclude
statements.

Theprograminitialization, body and subroutinesdepend upon the nature of
your program. Refer to the examplesin the QB directory and to Section 4
for programming ideas. At the end of the program, use the ieClose
command to cleanup the GPIB interface and restore the host environment.

CALL ieClose ()
END

When you have finished writing your program, saveit. This step isvery
important as you could loose the program if the computer hangs up while
running the program and you have to reboot the computer.

To run the demo program from the command line type

>QB PC2QBDEM /L PC2QBDOS

To run your program, substitute your program's name for PC2QBDEM in
the above line

5-10

535 Parameter Passing

In Quick Basic, all parametersused in CALL statements may be passed as
avariablenameor asanumericor literal value. For examplethecommands

DVM% = 4

CALL ieTrigger (DVM%)
and

CALL ieTrigger (04)

are equivalent. Quick Basic variables and constants are defined in the
Command Reference Section.

5.3.6 UsingInterruptsin Quick Basic

The 488.2 Driversrecognize three eventsin Quick Basic - Error; SRQ and
Timeout. The event meanings are listed in Table 5-4.

TABLE 5-4 QUICK BASIC INTERRUPTS

Type Interrupt

ERROR 488 Driver detected error. Theerror typeisdetermined by
calling the STATUS command.

SRQ GPIB bus SRQ signal asserted by a device who needs
service.

TIMEOUT GPIB handshake is hung or a device response exceeded the
set timeout value.

To use the PC2 interrupt capability in Quick Basic, the user inserts the
following commands into his program:

ON UEVENT GOSUB <user subroutine>
UEVENT ON

The default SETTING% value of 100 HEX disables all interrupts. To

enable the interrupts, you must set the appropriate SETTING% bits to 1
before calling IEINIT. The bits are:

5-11

SETTING% BIT PC2 INTERRUPT

9 SRQ
10 Timeout
11 Error

Note- An SRQ interrupt also requiresthat hardware interrupts be enabl ed.
Refer to section 1.7.4 for enabling hardware interrupts.

The following example enables the timeout interrupt by setting bit 10 on.

SETTING% = 500 HEX 'Enables Timeout
CALL ielnit IOPORT%, MYADDR%, SETTING%)

When aninterrupt occursin Quick Basic, the programwill gototheservice
routine specifiedinthe ON UEVENT GOSUB () statement. |f morethan
one event is enabled, the user will haveto test the Event Status and branch
to the correct serviceroutine. A suggested interrupt routineis

'EVENT ROUTINE
CAUSE% = ieEventStat()
IF CAUSE% =8 THEN
PRINT 'UNEXPECTED EVENT STATUS'
STOP
ELSE
IF CAUSE% AND 4 THEN
GOSUB SERVICE_ERR
END IF
IF CAUSE% AND 2 THEN
GOSUB SERVICE_TIMEOUT
END IF
IF CAUSE% AND 1 THEN
GOSUB SERVICE_SRQ
END IF
END IF
RETURN

Figure5-2 Quick Basic Interrupt Handling Routine

5-12

54 PASCAL PROGRAMMING

This section explains how to use the 488 Drivers for Pascal Language
programming withthe488-PC2 Card. Usethe488 Driver Borlandlibraries
with Borland Turbo Pascal versions 4.0. Use the 488 Driver Microsoft
libraries with Microsoft Pascal version 4.0. Both Pascal libraries provide
all of the IEEE 488.1 functions necessary to program aGPIB systeminthe
Pascal language.

5.4.1 Pascal Librariesand Programs

ThePascal librariesand demo programsarelocatedintwodirectoriesonthe
488 Driver Disk. One directory (BTPASCAL) supports Borland Turbo
Pascal programsand the other directory (M SPASCA L) supports Microsoft
Pascal programs. The BTPASCAL directory contains a library file, an
object file for IEEE functions, demo programs and a readme file. The
MSPASCAL directory containsaPascal library file, anincludefile, demo
programs and areadme file. Tables 5-5 and 5-6 list the contents of each
directory.

5.4.2 Ingtalling the Pascal Libraries

Before programming in Pascal, you have to copy the appropriate Pascal
library filesto your working directory. Normally thisisadirectory on your
hard disk.

The Pascal directories on the 488 Driver Disk contain all of the Pascal
callable |IEEE 488 library functions for application programs written in
Microsoft Pascal or Borland Turbo Pascal. Copy the complete contents of
the appropriate directory to the working directory on your hard disk. You
can use the demo programs as a starting point for your program and del ete
them when done.

ToINSTALL thelibraries:

1. Make abackup copy of ICSs original disk as described in para-
graph 1.7 and you are working from the copy.

5-13

TABLE 55 BTPASCAL DIRECTORY CONTENTS
FILE DESCRIPTION
GPIB.TPU A library file that has all of the IEEE- 488.1 functions

GPIB.PAS

PC2TPDRV.OBJ

PC2_34.PAS

PC2INT.PAS

PC2DEV.PAS

DEMOLIB.TPU
DEMOLIB.PAS
README.DOC
PC2FUN.PAS

EX1 TB.PAS
EX4_TB.PAS

reguired for Borland Turbo Pascal programs.
Source file for GPIB.TPU

An object file that contains all of the IEEE-488.1 func-
tions for Turbo Pascal programs.

Demo program that transfers data to and from a ICS
Model 4834 Serial Interface. Program also demonstrates
serial and parallel polling. Disk containsan .exeversion.
Uses SRQsto input data. Disk contains an .exe version.

Shows how to usethe PC2 card asabusdevice. Disk also
contains an .exe version.

Library file used by the demo programs.
Source filefor DEMOLIB.TPU

This file contains latest information about the Borland
libraries and commands.

Demo program

Demo programs.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing Pascal or project directory, type
CD directoryname to get to the Pascal directory. If you arein
DOSSHELL, select the appropriate Pascal or project directory.

3. Insert the copy disk into your floppy disk drive.

4. Copy the desired library files onto your directory.
Directory BTPASCAL contains the Borland Turbo Pascal GPIB

library.

Directory MSPASCAL containstheMicrosoft Pascal GPIB library
and an includefile.

5-14

TABLE 5-6 MSPASCAL DIRECTORY CONTENTS

FILE DESCRIPTION

MSPPC2.INC Aninclude file that defines the IEEE 488.1 functions.

PC2MSPDV.LIB |Library file that contains al of the GPIB functions for
Microsoft Pascal programs.

PC2_34.PAS Demo program that transfers data to and from a ICS
Model 4834 Serial Interface. Program also demonstrates
serial and parallel polling. Disk containsan .exeversion.

PC2INT.PAS Uses SRQsto input data. Disk contains an .exe version.

PC2DEV.PAS Showsthe PC2 card as abus device. Disk also contains
an .exefile.

DEMOLIB.PAS | A Pascal unit file used by the above demo programs.

DEMOLIB.INT | Theinterface portion of the DEOMLIB

DEMOLIB.IMP | The implementation portion of the DEMOLIB

README.DOC | Thisfile contains latest information about the Microsoft
libraries and commands.

54.3 Programming In Pascal

Each Pascal language library contains routines that provide |EEE-488
language extensions for your Pascal language programs. Each routine
includes bus error checking. The routines also check parameter valuesto
insure that appropriate bus protocol is followed.

Each 488 Driver Pascal function specifies parameters that it must receive
from the program or parametersthat it passes back to the program. These
parameters are shown in parentheses following the function name.

1. The order, number and type of variables passed to thefunctions must
be exactly as shown for each function.

2. Passed parameters can be variables or constants. However, the
passed parameter must beapointer of acharacter stringwhenstring
I/Oisinvolved.

5-15

Most of the Pascal commands return an integer that equals zero if thereis
no error. Otherwise it equals the error number. The error number and
meanings are listed under ieErrPtr in the Command Reference section. To
usethe commandswithout checking for errorsjust put theminthe program
as stand aone functions.

ie, ieOutput (DVM, SetupString);
To check for errors, create an integer and set it equal to the command.

ie, ioerr :integer
ioerr :=ieQutput (DVM, SetupString);

5.4.4 Turbo Pascal Programming

The 488 Driver functions for Turbo Pascal are contained in the file
PC2TPDVR.OBJ.

Thefile GPIB.TPU isaprecompiled unit file of the sourcefile GPIB.PAS.
Unitsarethebasi sof modular programmingin Turbo Pascal. They areused
to create libraries that can be included in Turbo Pascal programs with out
having to include the source code.

Thefile GPIB.PAShasthedefinitionsand declarationsneeded for all of the
GPIB functions. Theuser can copy the definitionsinto the program or use
the statement 'uses GPIB' to include the definitions in the program. The
definitionswill beincluded asif they wereon asingleline. The functions
containedinthe GPIB.TPU fileareindicated by the P Compatibility column
in Table 3-1.

To use the 488.2 Driver functions include the statement ‘uses GPIB' at the
beginning of your Turbo Pascal program. Files GPIB.TPU and
PC2TPDRV.OBJ must be in the same directory as your Turbo Pascal
program. Develop the program with the desired 488 Driver functions and
run the program.

5-16

5.4.5 Microsoft Pascal Programming

The 488 Driver library procedures and functions for Microsoft Pascal
(PC2MSPDYV .L1B) can bethought of asan extension to the Pascal libraries
that Microsoft offered. The extension consists of those procedures and
functions indicated by the P Compatibility column in Table 3-1. These
functions and procedures are fully compatible with the |EEE 488.1 Stan-
dard.

Usingthe488 Driver proceduresand functionsrequiresthefollowing steps:
1. Definethe 488 Driver functions and proceduresthat will be called
intheprogram by including thefollowingincludestatementinyour
program. Type the include statement exactly asit is shown.
($INCLUDE:'MSPPC2.INC)
2. Develop the program with the 488 Driver functionsthat you need.

3 Compile the source code with the Microsoft Pascal compiler.

4. Link the OBJ code with the 488 Driver library PC2MSPDV .LIB
and any other necessary libraries.

5. Execute the program.

o-17

5.5 C/C++ LANGUAGE PROGRAMMING

This section explains how to use the 488 Drivers for C/C++ Language
programming with the 488-PC2 Card. Use the 488 Driver Microsoft
librarieswith Microsoft Quick C version 2.5, Microsoft C versions 5.0 and
6.0, Microsoft C/C++ version 7.0 and Visual C++ programs. Usethe 488
Driver Borland libraries with Borland Turbo C++ and Borland C/C++
versions 2.0, 3.0 and 4.0 language programs. Refer to paragraph 2.3 for a
complete list of the supported C languages and versions.

55.1 CLibrary Filesand Demo Programs

TheClibrariesand demo programsarelocated in two directoriesonthe 488
Driver Disk. One directory (MSC_CPP) supports Microsoft C programs
and the other directory (BORC_CCP) supports Borland C programs. Both
directoriescontain Clibrariesfor variousmemory sizes, anincludefilesand
some demo programs. The include file PC2INC.H references the Driver
commands, setsglobal variables, and establishesthe default values. Tables
5-7 and 5-8 list the contents of each directory.

55.2 Ingtallingthe C Libraries

Before programming in C, you have to copy the appropriate C library files
to your working directory. Normally thisisadirectory on your hard disk.

The C directories on the 488 Driver Disk contain all of the C callable 488
Driver library functionsfor application programswrittenin Microsoft C or
Borland C. All library fileshavethe .LIB extension. Thefirst letter of the
file name specifies the memory model size. The next three letters specify
Microsoft or Borland compliers.

Prefix Size Code Company
S Small MSC Microsoft
M Medium TBC Borland
L Large

ToINSTALL thelibraries:

1. Make abackup copy of ICS's original disk as described in para-
graph 1.7 and you are working from the copy.

5-18

TABLE 5-7 MSC_CPP DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INC.H A header file for accessing the commands in the C
libraries. Required for calling 488 Driver functions.

SMSCPC2.LIB Library for small memory model applications.

MMSCPC2.LIB | Library for medium model applications.

LMSCPC2.LIB Library for large memory model applications.

PC2CINT.C Thisisademo program for MS C ver 7.0 that uses a488-
PC2 cardto send commandsto an CS 4891 Power Supply
Programmer to generate DC voltages and uses an HP
3478 DV M to read the voltages. Shows use of interrupts
toreadindatafromtheDVM. Disk also containsan.EXE
file.

PC2 34.C Thisisademo programfor MSCver 5.1 that usesas488-
PC2 Card to write and read back test strings from ICS
4834 GPIB-Seria Interface. Showshow to usesecondary
addresses. Disk also contains .EXE file.

PC2DEV.C Thisisademo program for MS C ver 5.1 that shows how
to use the 488-PC2 card as adevice. Disk also contains
EXEfile.

README.DOC | Thisfile contains latest information about the Microsoft

libraries and commands.

2. Boot up your computer and type CD\ to get the root directory.
Using the name of your existing C or project directory, type CD
directorynametogettotheCdirectory. If youareinDOSSHELL,
select the appropriate C or project directory.

3.. Insert the copy disk into your floppy disk drive.

4. Copy the desired library files onto your directory.
Directory MSC_CPP contains the Microsoft C libraries.
Directory BORC_CPP contains the Borland C libraries.

5-19

TABLE 5-8 BORC_CPP DIRECTORY CONTENTS

FILE DESCRIPTION

PC2INC.H A header file for accessing the commands in the C
libraries. Required for calling 488 Driver functions.

STBCPC2.LIB Library for small memory model applications.

MTBCPC2.LIB | Library for medium memory model applications.

LTBCPC2.LIB Library for large memory model applications.

PC2CINT.C Thisis ademo program that sends commands to an ICS
4891 Power Supply Programmer to generate DC voltages
and uses an HP 3478 DV M to read the voltages. Shows
useof interruptsto read in datafromthe DVM. Disk also
contains an .EXE file.

PC2 34.C Thisisademo program for Borland C ver 2.0 that writes
and reads back test strings from ICS 4834 GPIB-Serial
Interface. Showshow to use secondary addresses. Disk
also contains .EXE file.

PC2 DEV.C Thisisademo program for Borland C ver 2.0 that shows
now to use the 488-PC2 card as a device. Disk also
contains an .EXE file.

BOR_CPP A sub-directory containing sample C++ programs and
files.

README.DOC| This file contains latest information about the Borland
libraries and commands.

553 Programmingin C/C++

Each 488 Driver C function specifies parametersthat it must receive from
the program or parameters that it passes back to the program. These
parameters are shown in parentheses following the function name. The
order, number, andtypeof variabl es passed to thefunctionsmust beexactly
the same as the syntax shown for each functions.

Most of the C commands return an integer that equals zero if thereis no
error. Otherwise it equals the error number. The error number and
meanings are listed under ieErrPtr in the Command Reference section. To
usethe commandswithout checking for errorsjust put themin the program
as stand alone functions.

5-20

ieOutput (DVM, SetupString);
To check for errors, create an integer and set it equal to the command.

int CmdErr;
CmdErr = ieOutput (DVM, SetupString);

5.5.4 Usingthe488.2 Driver Library Functions

The 488 Driver Libraries for Microsoft C/C++ (SMSCPC2.LIB,
MMSCPC2.LIB, LMSCPC2.LIB) can bethought of asan extension to the
SLIBC.LIB, EM.LIB and LIBH.LIB libraries that Microsoft Corp. offers.

The 488 Driver Libraries for Borland C/C++ (STBCPC2.LIB,
MTBCPC2.LIB, LTBCPC2.LIB) can be thought of as an extension to the
libraries that Borland International offers.

Each C library contains all of the functions listed in Table 3-1. These
functionsallow thePCtooperateasan | EEE 488.2 BusController with both
interfaces or as a GPIB device when used with ICS's 488-PC2 card. Both
C and C++ languages use the same C library. The PC2INC.H header file
will automatically handle the interface for the two languages.
Using 488 Driver library functions requires the following steps.

1. Include PC2INC.H in al programs which use PC2 Driver.

2. Develop the program with the 488 Driver functionsthat you need.

3 Compilethe source code with the appropriate memory model, e.g.
for small Model C programs use the following commands:

Microsoft C: cl /c /IAS prog.c
Borland C: bcc -C -ms prog.c

4. Link the OBJ code with the necessary libraries. The 488 Driver

functionsarestoredinthefollowinglibrariesaccordingtodifferent
memory models.

5-21

Microsoft C:

SMSCPC2.LIB 488 Driver library for S model
MMSCPC2.LIB 488 Driver library for M model
LMSCPIC2.LIB 488 Driver library for L model

e.g.. Link prog SMSCPC2.LIB for small model
Borland C:

STBCPC2.LIB 488 Driver library for S model
MTBCPC2.LIB 488 Driver library for M model
LTBCPC2.LIB 488 Driver library for L model

5. Prepare and Execute the program.

Note: The PC2INC.H header file contains ANSI function proto-
typesfor thelibrary functions. If theheader fileisincluded thenthe
compiler will detect most parameter errors.

Compile and run the program.
555 UsingInterruptsin C/C++

The488.2 Driver addsthe capability of handling of SRQ, timeout and error
conditions. With these functions, the C programmer may design his own
handler and install or remove it seamlessly. When installed, the user
defined handler will become part of the PC2 driver interrupt processing
sequence and will be activated when an abnormal condition occurs. To use
interrupts, do the following:

1) Design your own handler as a separate C function which hastype
far, return void and takes no argument. Follow all recommended
notes of the ieServiceEnable function in the Command Reference
section.

2) In the main function, do all necessary initialization for your
program.

5-22

3) Cadllielnitwiththeseected event and IRQ channel. Note- an SRQ
interrupt also requires that the hardware interrupts be enabled.
Refer to section 1.7.4 for setting hardware interrupts.

4) Cadll ieServiceEnable to install your handler.

5) Start your main processing section. From this point, your handler
will be triggered by the intended event until you explicitly call
ieServiceDisable or ieClose.

Example interrupt source code is provided in both C directories.
5.5.6 UsingthePC asa Device

There aretimeswhen it is desirable to connect aPC to aGPIB Busand yet
not be abus controller. The major changes to use the 488-PC2 card asa
deviceinterfacerequire modifying the card'sinitialization and input/output
string terminators. The initialization function, iel nit(), has three param-
eters: ‘ioport', 'myaddr’, and 'setting'. The ioport address is the same
regardless of whether the card will be a controller or device. The only
reason that theioport addresswould changeisif the address switch setting
is changed.

The myaddr parameter isthe address assigned to the PC as a Bus device.
Bus controllersnormally use addresses 0 or 21 (HP preference). Alternate
Bus controllers normally take the next higher addresses, i.e. 1 or 22. Bus
devices are assigned unused Bus address 1 to 20 and 22 to 30. Address 31
isan invalid address and cannot be used.

The setting parameter must be changed to refl ect the non-system controller
use of the 488-PC2 card. Bit 5 must be set to "1’ for operation in the device
mode. Bit 12 may be set on for high speed handshakes or | eft off for lower
speed handshakes. If the Bus controller usestristate drivers, bit 12 should
be set on.

The'outeol' and'ineol' parametersintheieEol () function that set the output
string and the input string terminators need to match the Bus Controller's
format for output and input string terminators. They must be atered to
properly handle the ieEol parameter setting of string terminators of the
device. Thatis'outeol' must matchthebuscontroller'sexpectedinput string
terminator. 'inEol' must be set to match the bus controller's output string
terminators.
5-23

Thedemo program PC2dev.C makes488-PC2 card function asadevicethat
sends out and receives data from the bus controller. Asadevice, the 488-
PC2 will not be abletoissue'REN', 'IFC' or 'ATN." The program pollsthe
address status register of the 7210 controller |C on the 488-PC2 card to see
whether MLA, my listen addressor MTA, my talk address has been sent to
the |EEE bus by the bus controller, and then the PC does a data transfer.

The demo program uses a FIFO ring buffer data structure to do the data
transfer. The head of the ring buffer pointsto the last string that has been
read from the buffer and output to the bus controller. The tail of thering
buffer points to the string that the PC user has most recently entered from
the keyboard. The user can pressthe RETURN key to enter astring at any
time after the device address of the 488-PC2 card has been entered. If the
488-PC2 receivesitstalk address and the ring buffer isempty, the program
will prompt the user to enter a string and then send it to the bus. If return
is pressed and a string is entered while the 488-PC2 is not addressed as a
talker, it will output an SRQ to the bus and respond to a serial poll with a
hex 41 character.
CAUTION

The 488-PC2 can be switched from listener to talker
directly, but it cannot be switched from a talker to
listener. Thebuscontroller hasto send a UNT message
to the 488-PC2 before it makesthe 488-PC2 a listener.

An alternate approach to data transfer is using the address status change
interrupt instead of polling the 7210's address statusregister. Usetheielnit
function to select adesired IRQ level, and enable the ADSC interrupt by
writingaltobit position 0 of 7210 Interrupt Mask 2 Register. Aninterrupt
service routine needs to be created that will either do data input upon
sensing itslisten address or adataoutput upon sensing itstalk address. See
paragraph 5.5.5.

557 C++ Demo Program

TheBOR_CPPdirectory containsaC++demo programlabeled PC2_34.cpp.
This program demonstrates how to control and pass datato a GPIB device
whichisan ICSModel 4834 GPIB to Serial Interface. Inthe program, the
4834 configuration is set to 'T1' which putsthe 4834 inlocal loopback test
mode. The program sends out data strings to the 4834 and then reads the
data back from the same serial channel.

5-24

Command Reference

6.1 INTRODUCTION

This section describes the 488.2 Driver commands and functions. The
description for each command or function includes the command and
function syntax, parameter types, responses where appropriate, and usage
examples for Pascal, Interpretive BASIC, Quick Basic, C and C++. Bus
activity is described where appropriate to explain the command.

The commands are organized on individual pages and labeled in mixed
capital and lower case lettersfor legibility. The command syntax for each
languageisalsoshowninmixedletersexcept for Interpretive BASICwhich
is shown in al capitals. When Interpetitive BASIC and Quick Basic
(Compiled Basic) have the same syntax, they are shown together on the
same line and labeled BASIC/QB

6.2 COMMAND CONVENTIONS

Table6-1liststhecommon conventionsusedinthe488.2 Driver commands.
Constants are shown all upper case.

6.3 CONSTANTSAND DEFAULT VALUES

Someof thecommand parametersremain constant throughout most programs.
To simplify the users programming tasks these constants have been placed
inincludefilesineachlanguage'sdirectory. Table6-2liststheconstantsand
their default settings for each language.

TABLE6-1 COMMON COMMAND PARAMETERS

Parameter Description
< > arequired parameter.
[] an optional parameter.
DevAddr GPIB device address which may be one of threeforms:
pp = primary addresses 0 to 30 for Interpretive
BASIC and Pascal
pp[ss] = primary addresses O to 30 and optional
secondary address of 00 to 31 for Quick
Basic, C and C++. Thisform does not
support secondary addresses for primary
address 0
CardID [pp [ss]] = CardID value of 7 to 4, primary
addressof 00to 30, and optional secondary
address of 00 to 31 for MS Windows.
PC2ADDR type definition for PC2 DLL device address. The
format is CardID [pp [ss]].
CardID an integer which identifies the logical 488-PC2 card.
PrimAddr an integer which represents primary addressfield (pp).
AddrList One dimensional array whose entries are device
addresses and is terminated by END_ADDR. Format
ispp[ss]-
PrimList an address list composed of only primary addresses.
END_ADDR a constant (3131) used to terminate an address list.
n a numeric integer.
string a series of ASCII characters.
data a series of binary bytes or ASCII characters.
<nl> arequired command terminator sequence. For |EEE-

488.2 commands, <nl>isalinefeed (LF), EOIl asserted
on the last character or a combination of both events.

6-2

TABLE6-2 DEFAULT CONSTANT VALUES

Language BASIC Quick Basic C/C++

File name ICSDECL.BAS | PC2COM.BAS | PC2COM.H

488.2 DRIVER Conptants
CardID - - -
MyAddr% 21 21 21
NoAddr% -1 -1 -1
END_ADDR% — 3131 3131
| OPort% &H2E1 &HZ2E1 0x02E1
Setting% &HO &H100 0x1100
Time% 10000 10000 10000
OutEOL % 0 0 0
OutEOL Str$ CHR$10 CHR$(10) CHR$(10)
INEOL% 0 0 0
INEOSByte% 10 10 10
SRQServ — 1 1
TimeOutServ — 2 2
ErrorServ — 4 4
TC_ASYNC — 0 0
TC_SYNC — 1 1
TC_END — 2 2

6.4

| EEE-488.2 commands can be terminated by alinefeed (LF), EOI asserted
on the last character or a combination of both events. Older |EEE-488.1
devices may recognize a carriage return (CR) as the command terminator.
The 488.2 Drivers default output terminator is line feed (LF) with EOI

6-3

GPIB COMMAND TERMINATORS

TABLE 6-2 DEFAULT CONSTANT VALUES (CONT.)

BASIC Quick Basic C/C++
Other Constants
LF 10
CR 13
YKEY 89
NKEY 78
ESCKEY 27
RTNKEY 13
Strings
TALKS "UNL UNT
MLA TALK"
LISTENS "UNL UNT
MTA LISTEN"
UNTS "UNT"
UNLS "UNL"
SECODATAS "SEC 0 DATA"
SECO0S "SEC 0"
SPACES80$ STRING$(80)

asserted on thelast byte. The output terminator is changed by changing the
'OutEOLStr' parameter in the ieEol command.

Input GPIB messages can beterminated by acarriagereturn (CR), linefeed
(LF), by EOI asserted on thelast character or by acombination of all two or
three events. An |EEE 488.2 device always appends the line feed (LF)
character to an ASCII message and asserts EOI on the last byte of the
message. The488.2 Driversdefault input terminationislinefeed (LF) and
for EQI asserted. Purebinary datawith EQI asserted can be terminated by
abyte count with theieEnterB command. The input terminator is changed
by changing the 'InEOSBYyte' parameter in theieEOL command.

6-4

6.5 RETURN VALUES AND ERROR CODES

The C/C++, Visua Basic and Pascal language commands or functions
return avalue which contains the function result and/or an error code. The
error code is zero if there were no errors, non-zero otherwise. The error
codesand definitionsarelisted below in Table6-3. Seeparagraph4.2.12for

how to handle command errors.

Interpetive BASIC and Quick Basic commands and functions that do not
directly return avalue can havetheir error codesread by calling theieStatus
command. TheieStatus command returnsthe error code for the last called
command. RefertotheieStatuspagefor thecorrect syntacx and an example

of how to use the command with the Basic languages.

TABLE 6-3 COMMAND ERROR CODES

Code

Error Description

wNBEF- O

(62 -5

© 00N

10-255

none

Handshake Timeout

Interface Error

Called a controller related function when the
PC2 is not the system controller

Invalid passed parameter(s)

Keyboard break key used to quit handshake
timeout

Failed to allocate DMA buffer

Could not find a device regquesting service

No acceptor present on the bus

Incompatible hardware. Could not find 488-
PC2 Revision 1 Card or 4818 Module.

Reserved

6.6 COMMAND REFERENCE

The remainder of this section contains a detailed description of each 488.2
Driver command or function. The commands and functions are listed
alphabetically. Immediately following the command references are three
Time Utility functions that the user will find convenient for creating time
related programs.

Command or function examples are shown for Interpetive BASIC, Quick
Basic (Compiled Basic) and Clanguageswhereappropriate. The command
syntax for eachlanguageisalsoshowninmixedletersexceptfor Interpretive
BASICwhichisshowninall capitals. WhenInterpetitiveBASIC and Quick
Basic (Compiled Basic) have the same syntax, they are shown together on
the same line and labeled BASIC/QB

Pascal programmers may use the C example as a guide and should refer to
the example programs in the Pascal 1anguage directory.

leAbort

Pur pose:

This command clears all device interfaces and causes the Interface to take
control of the bus.

Syntax:

BASIC/QB - CALL IEABORT

Pascal - ieAbort: integer;

C, C++ - intieAbort()

WinDLL - ieAbort(PC2ADDR CardI D)
Return Value:

Error Code for Pascal, C/C++ and Win DLL commands
Bus Activity:

IFC is pulsed for aminimum of 100 microseconds
REN is set

ATN iscleared

Comments:

ieAbort can only be called when in system controller mode. An error will
occur otherwise. Refer toielnit for the system controller setting.

Examples:

For BASIC/QB CALL IEABORT

For C/C++ if(ieAbort()==ERR_NO4882) {..};
For Win DLL ieAbort(7)

ieAllSpoll

Pur pose:

This command performs 488.2 Serial Poll All Devices protocol. Pollsthe
devicesin the AddrList and returns the responses in a separate list.

Syntax:
Quick Basic - CALL ieAllSpoll (ADDRLIST%(), RESPLIST%())
C, C++ - void ieAllSpoll(int far * AddrList, int far * RespList)

WinDLL - ieAllISPoll(int CardID, PC2ADDR* DevLigt,
int numDevices, WORD* RespList);

Return Value:
Error Code for Win DLL commands
Comments:

This command causes the 488-PC2 to serial poll al devices listed in the
AddrList. Responses are placed in a one dimensional integer array
RespList onaone-to-one matchwiththe AddrList. RespList length must
be greater than or equal to AddrList. Response values are 0 to 255.

If the devicefailsto respond to the serial poll, the response valueisa 16 bit
negative value with bit 15 true. Bits 14-8 contain the error code and bits 7-
0 contain the devices response if any.

Examples:

For Quick Basic
DIM ADDRLIST% (3)
DIM RESPLIST% (2)
ADDRLIST% (1) =04
ADDRLIST%(2) = 0501
ADDRLIST%(3) = 3131 'marks end of list
CALL ieAllSpoll (ADDRLIST%(), RESPLIST%())

continued ieAllSpall

For C/C++
int AddrList[] = {4,506,3131};
int RespList[3];
ieAllSpoll(AddrList, RespList);

6-9

1eClose

Pur pose:

Thiscommand cleansupthe488.2 Driversand restoressystem environment.
Syntax:

Quick Basic - CALL ieClosg()

C, C++ - void ieClose(void);

Return Value:

none

BusActivity:

None

Comments:

ieClose should be called as the last command in the program and before
calling ielnit asecond time. If ielnit iscalled more than oncein aprogram

then ieClose must be used before the second and subsequent iel nitsto clean
up the prior ielnit.

Examples:
For Quick Basic

CALL ieClose()
For C/C++

ieClos«();

6-10

1eDevClr

Pur pose:

Returnsabus device'sinternal logic to aknown device-dependent state. It
can be sent to all addressed listeners or to a specific device.

Syntax:

BASIC/QB - CALL IEDEVCLR (DEVADDR%)

Pascal - ieDevClr (DevAddr: integer) : integer;
C, C++ - intieDevClr (int DevAddr)

WinDLL - ieDevClr (PC2ADDR DevAddr)
Return Value:

Error code for Pascal ,C/C++ and Win DLL commands.
Comments:
If PrimAddr is 0 to 30, then the driver sends a Selective Device Clear

command to thedevice. If DevAddr is-1 (NoAddr) or 31, thenthe driver
outputs a universal Device Clear command to the bus.

Examples:
For BASIC/Quick Basic

DEVADDR% =4
CALL IEDEVCLR (DEVADDR%) 'clears device 4

CALL IEDEVCLR (NOADDR%) ‘outputs DCL to the bus
For C/C++
ieDevClr (4); [* clearsdevice4 */

ieDevCIr (NoAddr); /* outputs DCL to the bus */

6-11

ieDevice

Purpose:

This command maps the PC printer or COM port to the GPIB port so that
data directed to the printer or com port is outputted to a device on the bus.

Syntax:

BASIC/QB -CALL IEDEVICE (DEVADDR%, DOSPORT %)

Pascal - ieDevice (DevAddr, DOSPort:integer) : integer ;
C, C++ - intieDevice (int DevAddr, int DOSPort)
Return Value:

Error code for Pascal and C/C++ commands.
Comments:

If 0<PrimAddr < 30thenthe488.2 Driver will addressthedevicetolisten
before outputting data. If PrimAddr < 0 or > 30, the replacement of LPT
nor COM isdisabled.

DOSPort Specifiesthe PC printer or COM port that is replaced according
to the following table.

DOSPort Value Replaced PC Port
LPT1
LPT2
LPT3
CoM1
COM2

abrhwWwN -

Warning:

Using this command to replace COM 1 or COM2 could hang the system if
another application attempts to initialize the replaced COM port.

6-12

IeEnter

Pur pose:

This command reads device data. Reading continues until one of the
following events occurs:

e EOI lineissensed

 EOS character is sensed if enabled

¢ the maximum number of charactersis received
Syntax:

BASIC /QB - CALL IEENTER (DEVADDR%, INSTRING$)

Pascal - ieEnter (DevAddr: integer; var InString: string):
integer;
C, C++ - intieEnter (int DevAddr, char *const InStringBuf,
int MaxLen)
WinDLL - ieEnter (PC2ADDR DevAddr, LPSTR InString,
int MaxLen)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

If 0< PrimAddr < 30then the specified deviceisaddressed asatalker and
thedataisenteredinto I nString fromthe device. Otherwise, dataisentered
fromthecurrent addressed talker andthe EOL used will befor thePC2'sown
address. MaxLen isan integer used by C language commands to specify
the maximum number of characters that may be inputted; 0 < MaxLen <
65535. Always set M axL en to one more than the number of charactersto
be input. Caution - use the ieEnterB command instead of the ieEnter
command to input binary data

Examples:

For BASIC/Quick Basic
DEVADDR% = 04
INSTRING$ = SPACES$ (80)
CALL IEENTER (DEVADDR%, INSTRINGS$)

6-13

ieEnter continued

For C/C++
char InString [1024];
ieEnter (4, Instring, 1024);

6-14

IeEnter A

Pur pose:

Thiscommand entersdatafromthedeviceintoanarray. Reading continues
until themessageterminator issensed or the maximum number of characters
isreceived.

Syntax:

BASIC - CALL IEENTERA(DEVADDRY, DATASEG%,
MAXLEN%)

Pascal - ieEnterA (DevAddr, DataSeg: integer): integer;

Return Value:

Error code for Pascal commands.
Comments:

If 0< DevAddr < 30, then the specified deviceis addressed as atalker and
dataisinputted from thedevice. Otherwisedataisinputted from the current
addressed talker. The data is put into a memory area segment specified
DATASEG% with the starting address offset = 0 MaxL en specifies the
maximum number of charactersthat may beinputted; 0< M axL en <65535.

Examples:

For BASIC
DEVADDR%Y= 04
DATASEG% = &H8000
MAXLEN% = 100
CALL IEENTERB (DEVADDR%, DATASEGS,
MAXLEN%)
‘enters up to 100 characters in into memory segment

6-15

IeEnterB

Pur pose:

This command enters binary or ASCII data from the device. Reading
continuesuntil the EOI lineis sensed or the maxi mum number of characters
isreceived.

Syntax:

Quick Basic - CALL ieEnterB (DEVADDR%Y, INSTRING$)

C, C++ - intieEnterB (int DevAddr, char* const InStringBuf,
unsigned int Maxlen)
WinDLL - ieEnterB (PC2ADDR DevAddr, LPSTR

InStringBuf, int Maxlen)
Return Value:
Error code for C/C++ and Win DLL commands.
Comments:
If 0< PrimAddr < 30, then the specified deviceisaddressed asatalker and
dataisinputted from thedevice. Otherwisedataisinputted from the current
addressed talker. InString isthe string variable that contains the received
data. MaxLen specifies the maximum number of characters that may be

inputted; 0 < MaxLen < 65535. Use ieEnterB to input binary data from
devices such as waveform recorders and digital oscilloscopes.

6-16

IeEnter B continued

Examples:

The following examples will terminate when EOI is sensed or when the
device has outputted 100 characters. MaxLen should not be set larger that
the expected character count if the device does not assert EOI on the last
character.

For Quick Basic
DEVADDRY%= 04
INSTRING$ = SPACES0$ 'see Table 6-2
MAXLEN% = 100
CALL IEENTERB (DEVADDR%, INSTRINGS,
MAXLEN%)
‘enters up to 100 charactersin INSTRINGS

For C/C++

ieEnterB (4, Instring, 100);
* enters up to 100 charactersin InString */

6-17

1eEoal

Pur pose:

This command sets the input and output data terminators for the specified
device. Default valuesfor ieEnter and ieOutput are LF with EOI asserted
ontheoutput and sensed ontheinput. Theterminatorsfor al devicesremain
at thedefault valueif thiscommandisnot called for those particul ar devices.

Syntax:

BASIC/QB - CALL IEEOL (DEVADDR%, OUTEOL %,
OUTEOLSTRS, INEOL%, INEOSBY TE%)

Pascal - ieEol (DevAddr, OutEOL: integer; var OutEOL Str:
string; INEOL, INnEOSByte: integer): integer;

C, C++ - intieEal (int DevAddr, int OWtEOL,
const char *OutEOL Str, int INEOL, int INEOSBYyte)

WinDLL - ieEOL (PC2ADDR DevAddr, int OuteOL,
const char * OutEOL Str, int OutEOL len, int INEOL,
int INEOSByte)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Comments:

If 0< PrimAddr < 30 then the terminators and specifiers are stored for the
specified device.

OutEOL selects the terminator that is appended to the output string.
Choices are:

OutEOL =0 for both OutEOL Str and EOI (default)
OutEOL =1 for EQOI only
OutEOL =2 for OutEOL Str only

OutEOL Str specifiesthe output terminator string. Maximum string length
is 8 characters. Defaultis"\n" (line feed)

6-18

IeEol continued

INEOL specifies the condition that terminates the input string.

INEOL =0 for terminate input when EOS character received, EOI
sensed or input string full. (default)
INEOL =1 for terminate input when EOI sensed or input string full.

INEOSByte specifies the byte code that terminates the input. The default
isdecimal 10 (Line feed).

Notes:

Whendatatransferstoor fromasecondary addressed device, theterminators
of its primary address are used.

Examples:

For BASIC/Quick Basic
DEVADDR% =4
'OUTEOLSTR$ = CHARS$ (13) + CHARS (10)
CALL IEEOL (DEVADDR%, OUTEOL %,
OUTEOLSTRS$, INEOL %, INEOSBY TE%)
‘changes EOL string for device 4 to CR LF.
'keeps default EOS Byte

For C/C++
ieEol (4, 0, "\15\n", O, 10);
/* changes EOL string for device4to CR LF
* keeps default EOS byte
*/

6-19

1eErrPtr

Pur pose:

This command assigns variables for error number and byte transfer count.
This function must be executed before calling any other command except
ielnitoritwill not work. Thiscommandisnot requiredin Pascal and C/C++
language programs as the commands return an error value when called.

Syntax:

BASIC/QB - CALL IEERRPTR (IOERR%, IOBY TES%)

Pascal - na
C, C++ - na
Comments:

IOERR is an integer which contains the error number of the last called
command. IOBYTES is an integer that contains the number of bytes
entered or outputted by the last called command.

The assigned IOERR and IOBY TES integer variables can be read at any
time by theieStatus function. The error codes are listed in Table 6-3.

Examples:

For BASIC/Quick Basic
CALL IEERRPTR (IOERR%, |IOBY TES%0)

For C/C++
[* every C command returns an error value */
int CmdErr;
CmdErr = ieAny Command();
[* error = 0 if the command was successful */

6-20

IeEventEnable

Pur pose:

Thisfunction enablesaparticular event to send anotification to aparticular
window application.

Syntax:

Win DLL - ieEventEnable(PC2ADDR CardID, HWND
hwnd, WORD wEvMask);

Return Value:

Error code for Win DLL commands.
Comments:
CardID specifies the card which is to generate a hardware interrupt.

EvM ask isacombination of theflagslisted below. Theuser must select and
enable a488-PC2 IRQ line for this function to work.

Flag Window Msg M eaning
PC2EV_SRQ1 WM-PC2_SRQ1 SRQ detected
PC2EV_CO WM-PC2_CO Command out request
PC2EV_LOKC WM-PC2 LOKC Lockout status change
PC2EV_REMC WM-PC2 REMC Remote status change
PC2EV_ADSC WM-PC2_ADSC Address status change
PC2EV_CPT WM-PC2 CPT Undefined command or

sec address received
PC2EV_APT WM-PC2_APT Sec address detected
PC2EV_DET WM-PC2_DET Devicetrigger detected
PC2EV_END WM-PC2 END Data transfer complete

EQI or EOS sensed
PC2EV_DEC WM-PC2 _DEC Device clear detected
PC2EV_ERR WM-PC2_ERR GPIB Bus Error
PC2EV_DO WM-PC2_DO Data byte out
PC2EV_DI WM-PC2_DiI Data bytein

For additional information about the event flags, refer to NEC 7210 data
book.

6-21

leEventStat

Pur pose:

Thisfunction returns an integer that indicatesthe type of event detected for
Quick Basic and C/C++ language programs.

Syntax:

Quick Basic - IEVENTSTAT

C, C++ - unsigned ieEventStat()

Return Value:

Error code for C/C++ commands.

Comments:

The function ieEventStat may be called at the beginning of an interrupt

service routine to determine which event(s) were detected. The function
ieEventStat returns an integer value with the following meanings:

Value M eaning Includefile constants
1 SRQ detected SRQSERV
2 Timeout occurred TIMEOUTSERV
4 Error detected ERRORSERV

For Quick Basic, this function will read-then-clear the driver's EventStat
Register. Only call thisfunction once after an interrupt.

For C, theevent flagisset whenthedriver activatestheuser'sserviceroutine

and is maintained throughout the routine. The driver will automatically
clear the flag when exiting the service routine.

6-22

continued ieEventStat

For both C and Quick Basic, the bus SRQ event is treated differently than
the other two events; it istriggered and latched when SRQ isasserted onthe
bus. The user hasto ensure his service routine will clear the device's SRQ
beforeexiting, otherwise, the subsequent SRQ event will most likely belost.

Examples:

For Quick Basic
EVENTFLAGY = IEEVENTSTAT
'AND EVENTFLAG% with SRQSERV, TIMEOUTSERV
and ERRORSERYV to determine event cause(s)
'See section 5.7 for a complete example

For C/C++
EventFlag = ieEventStat();
/* AND EventFlag with SRQServ, TimeOutServ and ErrorServ
to determine event cause(s) */

6-23

leFindL stn

Pur pose:

Thiscommand performsthel EEE 488.2 Find Listenersprotocol and returns
alist of al found listenersin the given address list.

Syntax:

Quick Basic - CALL IEFINDLSTN (ADDRLIST%(),
RESUL TLIST%())

C, C++ - void ieFindLstn(int far* AddrList, int far * ResultList)

WinDLL - WINAPI ieFindLstn(int CardID, PC2ADDR*
AddrList, inthumDev, PC2ADDR *ResultList,
int* numResults)

Return Value:
Result List as described below
Comments:

This command causes the 488-PC2 tests for presence of a device at each
primary address in the AddrList. If there is no response to the primary
address, the 488-PC2 tests for secondary address responses with the same
primary address. Theaddressof eachfounddeviceisplaedintheResultList.
Theprotocol searchesfor listenersuntil al arefound or until theResultL ist
isfull. TheResultList isterminatedwith END_ADDR (3131) by theuser.
The AddrList and ResultList are defined in Table 6-3. The Quick Basic
and C/C++ protocol sdo not check primary addressOfor secondary addresses.
Note that the Win DLL only returns the primary addresses of any found
secondary addresses.

The user should examinethe ResultL st to seeif all expected deviceswere
found. The ResultList can be edited and/or used asthe address list for the
other 488.2 protocols which require an address list.

Caution:

Be careful when performing this command on systems with Bus

Analyzers, BusExtender s, BusExpander sor listen-only devicesasthey
may respond to all possible addr esses.

6-24

continued ieFindL stn

Examples:

Thefollowing examplesarelooking for devicesat primary addresses4 and
5.

For Quick Basic
DIM ADDRLIST%(1 TO 3)
DIM RESULTLIST%(1 TO 10)
ADDRLIST%(1)=04
ADDRLIST%(2)=05
ADDRLIST%(3)=3131 'end of list
RESULTLIST%(10)=3131 'mark end of list
CALL ieFindLstn(ADDRLIST%(1), RESULTLIST%(1))

For C/C++
int AddrList[]={04,05,3131};
int ResultList[10];
ResultList[9]=3131;
ieFindLstn(AddrList, ResultList);

6-25

IeFINdRQS

Pur pose:

This function performs the |EEE 488.2 FindRQS protocol and returns the
address and response of the first device that it finds which is requesting
service.

Syntax:
Quick Basic - IEFINDRQS (ADDRLIST%(0), RESPONSE%)
C, C++ - int ieFindRQS(int * AddrList, int Response)

WinDLL - ieFindRQS(PC2ADDR CardID, PC2ADDR*
AddrList, int numDev, PC2ADDR* respDev,
word* Response)

Return Value:

Address of requesting device for Quick Basic and C/C++ commands.
Error code for Win DLL command.

Comments:

Thisfunction causesthe 488-PC2 to seria poll al devicesinthe AddrList
and returns the address of the first device found requesting service. The
found device'sstatusbyteisreturnedinthe Responseinteger. Thereturned
addressis3131if no devicesarefound that requested serviceand Response
is-1if thereisno statusbyte. If SRQ isnot asserted, Win DLL returnsthe
STB and address of the first device on the bus.

Examples:

For Quick Basic
DIM ADDRLIST%(1 TO 4)
ADDRLIST%(1)=2
ADDRLIST%(2)=10
ADDRLIST%(3)=1701
ADDRLIST%(4)=3131 'mark end of list
FOUNDRQS=ieFindRQS% (ADDRLIST%(1), RESPONSE%o)

6-26

continued ieFINdRQS

For C/C++
int AddrsList[]={04,1701,3131};
int* Response;
int FoundRQS;
FoundRQS=ieFindRQS(int far* AddrList, int far* Response);

6-27

leGotoStby

Pur pose:

Thiscommand changesthe Interface from an active Controller to aStandby
Controller and unasserts ATN if it was on.

Syntax:

Quick Basic - CALL ieGotoStby()

C, C++ - void ieGotoSthy(void);

Return Value:

none

Bus Activity:

If ATN wason it is unasserted.

Comments:

TheieGotoStby command makesthe Interface go to the Standby Controller
stateand unassert ATN if it wasthe Active Controller. Control isrecovered
by theieTakeCtl command. When in standby, the Interface can participate
in a shadow handshake and let two external devices exchange data.

Examples:

For Quick Basic
CALL ieGotoStby

For C/C++
ieGotoStby();

6-28

1eGPIBStat

Pur pose:

This function returns an integer that represents the state of all eight GPIB
interface signals.

Syntax:

Quick Basic - ieGPIBStat()

C, C++ - unsigned char ieGPIBStat(void)
Return Value:

An 8-bit value representing the state of the GPIB Control lines. A logical
'1" indicates the signal is asserted.

Bus Activity:

None

Comments:

The function ieGPIBStat returns the logical state of the GPIB interface
signals as an integer with avalue of 0 to 255. The return value equals the
binary sum of the asserted signals. Signalsareviewed insidethe Interface's
transceivers so the results only reflect the external GPIB bus signals as
indicated in the following chart:

Interface Mode

Bit Bit Weight Signal Ctlr Dev. Talker Listener
0 1 ATN X X

1 2 EOI X X
2 4 SRQ X

3 8 IFC X

4 16 REN X

5 32 DAV X
6 64 NRFD X

7 128 NDAC X

6-29

1IeGPIBStat continued

Examples:

For Quick Basic
SIGNALS% = ieGPIBStat

For C/C++
GPIB_Signas = ieGPIBStat();

6-30

el nit

Pur pose:

Thiscommandinitializesthedriversand setsthe Interface parameters. This
command must be called at least once at the beginning of the program.

Syntax:

BASIC/QB -CALL IEINIT (IOPORT%, MY ADDR%,
SETTING%)

Pascal - ielnit(1OPort, MyAddr, Setting: integer): integer;

C, C++ - void ielnit (unsigned int 10Port, int MyAddr,
unsigned int Setting)

WinDLL - ielnit (PC2ADDR CardID, int MyAddr,
WORD Setting)

Return Value:

none

Comments:

IOPort, CardID, MyAddr and Setting have their default values set by an
'include file. See Table 6-2.

IOPort specifiesthe Interface's PC internal 1O Addressin HEX. Must be
the same value as the card's address switch setting (see section 1.4.1).
Default value is 02E1H for the 488-PC2 Card and 0378H for the 4818
Module. CardID specifies the card based on the switch setting. Default
valueis7

MyAddr specifiesthe |EEE 488 bus address of the Interface from 0 to 30.
Typical bus controller addresses are 0 and 21. Default is 21.

Settingisal6 bitinteger, expressed as4 HEX characters, that setsthecard's

operational parameters as shown in the following figure. Default value
varies according to the language used. The setting bit meanings are:

6-31

lelnit continued

HEX

. MSD . . . LSD 1
1
BIT '15 14 13 12:11 10 8_:7654'32 1 0
T T T T TTT] T
1 1 1 1
1 1 1 T 1 0 0 No DMA
0 1 DMACh#1
Wait for DMA 0 0 0 1 0 DMA Ch#2
Background DMA 1 1 1 DMACh#3
Single byte DMA xfr 0 0 0 0 No interrupt
Block DMA xfr 1 10 0 IRQ2
101IRQ3
110 IRQ5
111 IRQ7
Slow Bus handshake 0 Q
Fast Bus handshake 1 0 System Controller
1 Nonsystem Controller or Device
Enable error interrupt 1 .
0 0 BASIC interpreter, Pascal
Enable Timeout interrupt 1 0 1 Reserved - do not use
. 1 0 Quick Basic, C Language
Enable SRQinterrupt 14 1 \igjal Basic for DOS, MS PDS 7.0
Examples:

Note - These examples are not meant to show default settings. Rather,
they are used to redefine some of thedefault valuesgivenin Table 6-2. The
user doesnot haveto redefine non-changed parametersbeforecallingiel nit.

For BASIC
IOPORT% = & H2E1
MYADDR% =21
SETTING% = &H0000
'BASIC language with no DMA or interrupts
CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'Default value example - Card isat 10 address 2E1, PCis
'device 21 and drivers execute interpretive BASIC.

For Quick Basic
IOPORT% = &H22E1 'some other card isusing 02E1
MYADDR% =0 ‘alternate bus ctlr address

SETTING% = &H0700

CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'‘Changed values example - card isat |0 address 22E1, PCis
'device 0, timeout and SRQ interrupts are enabled

'Drivers execute compiled Basic.

6-32

continued iel nit

For Quick Basicwith 4818 Module
IOPORT% = &H0378 '4818 Module on ptr port#l
MYADDR% =0 ‘alternate bus ctlr address
SETTING% = &H0500
CALL IEINIT (IOPORT%, MYADDR%, SETTING%)
'‘Changed values example - 4818 moduleis at 1O address 0378,
PC is'device O, interrupt for atime-out is enabled
'‘Drivers execute compiled Basic.

For C/C++
|0OPort = 0x02E1; /* default 10 value */
MyAddr = 21, /* default GPIB address */

Setting = 0x9701;

ielnit (I10Port, MyAddr, Setting);

[*This examples shows some non-default values

* Card isat 10 address 02E1, PC is GPIB device 21
* Background DMA and fast handshakes are enabled
* Timeout and SRQ interrupts are enabled

* DMA channel #1 is enabled

*/

6-33

leLlo

Pur pose:

This command executes aLocal Lockout (LLO) to disable adevice'sfront
panel. Itisreceived by all of the devices on the bus.

Syntax:

BASIC/QB - CALLIELLO

Pascal - ieLlo: integer;

C, C++ - intieLlo(void)

WinDLL - ieLLO(PC2ADDR CardID)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Bus Activity:

ATN isset
LLOissent

Comments:

If adeviceisin Local modewhenthe LLO isreceived, LLO does not take
affect until the device is addressed to listen.

Examples:

For BASIC/Quick BASIC
Call IELLO

For C/C++
ieLlo();

el ocal

Pur pose:

This command executes a Go-to-Local (GTL) or clears the REN line to
enable a device's front panel controls. It de-assertsthe REN line.

Syntax:

BASIC/QB - CALL IELOCAL (DEVADDR%)
Pascal - ieLocal(DevAddr: integer): integer;
C, C++ - intieLocal (int DevAddr)

WinDLL - ieLocal (PC2ADDR DevAddr)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

If 0<PrimAddr < 30thenthedriver addressesthe specified devicetolisten
and sendsit the GTL command and REN isset false (high). Thedevicewill
remain in local mode until next addressed to listen. If local lockout isin
affect, the device will return to thelocal lockout state when next addressed
to listen.

If PrimAddr < -1 or = 31 then the driver sets REN false. All devices are
placed in local mode and local lockout modeis cancelled. Win DLL does
not clear the REN line or cancel the local lockout mode and returns Error
code 4 for an invalid paremeter.

Examples:

For BASIC/Quick Basic
DEVADDR%Y% =4
CALL IELOCAL (DEVADDR%)
'Sets device 4 to local state

CALL IELOCAL (NOADDR%Y%)

'Sets all devicesto local state, NOADDR isdefined in the
'include file

6-35

lel_ocal continued

For C/C++
ieLocal (4); [* setsdevice 4 to local state */

ieLoca (NoAddr); [* setsall devicesto local state */

6-36

ieOutput

Pur pose:

This command outputs a string to a device. After the string is sent, the
terminator specified by the ieEol function is sent. Used to send ASCII
strings and numbersto devices.

Syntax:

BASIC/QB -CALL IEOUTPUT (DEVADDR%, OUTSTRING$)

Pascal - ieOutput(DevAddr: integer,var OutString: string):
integer:

C, C++ - int ieOutput (int DevAddr, char * OutString)

WinDLL - ieOutput (PC2ADDR DevAddr, char * OutString, int
length)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

If 0<PrimAddr < 30thenthedriver addressesthe specified devicetolisten
and sendsit the OutString followed by the ieEol termination specified in
OutEOL Str. OtherwiseOutStringissenttothecurrent addressedlistener(s).

Examples:

For BASIC/Quick BASIC
DEVADDR% =4
OUTSTRINGS$ ="ASCl|I String"
CALL IEOUTPUT (DEVADDR%, OUTSTRINGS$)
'‘Sends "ASCII String" to device 4

For C/C++

ieOutput (4, "ASCII string");
/* sends "ASCII String" to device 4

6-37

ieOutputA

Pur pose:

This command outputs a long string from an array to a device and asserts
EOQI onthelast character asenabled by theieEOL command. Thiscommand
only applysto Interpetive BASIC and Pascal languages.

Syntax:
BASIC - CALL IEOUTPUTA (DEVADDR%, DATASEG%,
BYTECNT%)
Pascal - ieOutputA (DevAddr, Dataseg, ByteCnt: integer):
integer;
Return Value:

Error code for Pascal commands.
Comments:

If 0<PrimAddr < 30thenthedriver addressesthe specified devicetolisten
and sendsit the output with EOI asserted on the last byte if enabled by the
ieEol command. Otherwise the output is sent to the currently addressed
listener(s). ByteCnt specifies the number of bytes to be output by the
command, 0 to 65,535 bytes.

The output istaken from a segment in memory specified by DATASEG.
The starting address of the output data has an offset of 0 in that segment.

Examples:

For BASIC
DEVADDR% =4
DATASEG%=& H4000
BYTECNT% = 300
CALL OUTPUTB (DEVADDR%, VARSEG
(OUTSTRINGS$), BY TECNT%)
‘sends 300 bytes to device 4 from memory segment at 4000
HEX.

6-38

ieOutputB

Pur pose:

Thiscommand outputsastring or aseriesof bytestoadeviceand assertsEOI
onthelast character. Thiscommandisused tooutput binary datato adevice.

Syntax:
Quick Basic - CALL ieOutputB (DEVADDR%, OUTSTRINGS$)

C, C++ - int ieOutputB (int DevAddr, char *OutString,
unsigned int ByteCnt)

WinDLL - ieOutputB (PC2ADDR DevAddr, char *OutString,
unsigned int ByteCnt)

Return Value:
Error code for C/C++ and Win DLL commands.
Comments:

If 0<PrimAddr < 30thenthedriver addressesthe specified devicetolisten
and sendsitthe OutStringwith EOI asserted onthelast byte. Otherwisethe
OutStringissent to the currently addressed listener(s). ByteCnt specifies
the number of bytes to be output by the command.

Examples:

For Quick Basic
DEVADDR% =4
OUTSTRINGS$ ="D" + CHAR$(129)
CALL ieOutputB (DEVADDR%, OUTSTRING$)
'sends ASCII 'D' plus 81 hex to device 4.

For C/C++

ieOutputB (4, "\65\31\n", 3);
/* sends 3 binary bytesto device 4 */

6-39

|ePassCtl|

Pur pose:

This command passes control to a specified device.
Syntax:
Quick Basic - iePassClt (DEVADDR%)
CIC++ - intiePassCtl (int DevAddr)
Return Value:
Error Code forC/C++ commands
Comments:
If 0< PrimAddr < 30 then the driver addresses the deviceto talk, sendsit
the TCT command and deasserts ATN. Otherwise the command is not
executed and an error valueis returned.
DevAddr specifies the address of the device being passed control.
Note - This command is not to be confused with the 488.2 protocol. Itis
merely a convenient way to pass control without having to use the ieSend
command.
Example:
For Quick Basic
DEVADDR% = 22
CALL iePassCtl (DEVADDR%)

For C/C++
iePassCtl (22);

6-40

iePPoll

Pur pose:

Thiscommand performsaparallel poll onthebus. Theeight bit parallel poll
response is returned as an integer with avalue of 0 to 255.

Syntax:

BASIC/QB - CALL IEPPOLL (PRESP%)
Pascal - iePPoll: integer;

C, C++ - unsigned char iePPoll(void)
WinDLL - iePPoll(PC2ADDR CardID)
Return Value:

Parallel poll response for Pascal, C/C++ and Win DLL commands.
Bus Activity:

ATN and EOI are asserted for 25 microseconds. Datalinesare pulled low
(true) by devices affirmative responses.

Comments:

For BASIC and Quick Basic commands, the paralel poll response is
returned in the integer PRESP.

Theparallel poll responseisaninteger withavalueof 0to 255 that isthesum
of the data lines that were true at the end of the parallel poll time.
i.e. response = 129 if lines DIO1 and DIO8 were true.

Examples:
For BASIC/Quick Basic

CALL IEPPOLL (PRESP%0)

'PRESP% contains the response byte value
For C/C++

PResp = iePPall();
/* Presp contains the response byte value */

6-41

i1ePPollC

Pur pose:

This command configures a device to respond to a parallel poll.

Syntax:

BASIC/QB - CALL IEPPOLLC (DEVADDR%, CONFIGBIT%)
Pascal - iePPollC(DevAddr, ConfigBit: integer): integer;

C, C++ - int iePPollC (int DevAddr, unsigned char ConfigBit)
WinDLL - iePPollC (PC2ADDR DevAddr, int ConfigBit)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

If 0< PrimAddr < 30thenthedriver outputsthe parallel poll enable (PPE)
command to the specified device, otherwisethe PPE command issent tothe
current addressed listeners.

ConfigBit isaninteger which specifiesthedatabit (line) for the parallel poll
response and the polarity of the response.

ConfigBit Values M eaning
0-7 Specifies datalines 0 - 7, false response
8-15 Specifies datalines 0 - 7, true response

Examples:

For BASIC/Quick Basic
DEVADDR% =4
CONFIGBIT% =9
CALL IEPPOLLC (DEVADDR%, CONFIGBIT%)
'sets device 4 to respond positively on dataline DIO2 (bit 1)

For C/C++

iePPolIC (4, 15);
* sets device 4 to respond positively on data line DI1O8 (bit 7) */

6-42

iePPollU

Pur pose:

This command performs a parallel poll unconfigure. It directs one or all
devices not to respond to a parallel poll.

Syntax:

BASIC /QB - CALL IEPPOLLU (DEVADDR%Y)
Pascal - iePPollU(DevAddr: integer): integer;
C, C++ - intiePPollU (int DevAddr)

WinDLL - iePPollU (PC2ADDR DevAddr)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

If 0 < DevAddr < 30 then the driver unconfigures a specific device,
otherwise the driver unconfigures all devices on the bus.

Examples:

For BASIC/Quick Basic
DEVADDR% =4
CALL IEPPOLLU (DEVADDR%)
‘removes device 4 from responding to a parallel poll

CALL IEPPOLLU (NOADDR%)
‘all devices are unconfigured and will no longer respond to the
paralel pall

For C/C++
iePPollU (4);
/* removes device 4 from responding to a parallel poll */

iePPollU (NoAddr);

/* al devices are unconfigured and will no longer respond to
aparald poll */

6-43

leRemote

Pur pose:

Thiscommand setsthe REN linetrue and placesany specified deviceinthe
remote mode.

Syntax:

BASIC/QB - CALL IEREMOTE (DEVADDR%)
Pascal - ieRemote(DevAddr: integer): integer;
C, C++ - int ieRemote (int DevAddr)

WinDLL - ieRemote (PC2ADDR DevAddr)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comment:

If 0<PrimAddr < 30thenthedriver setsREN onand addressesthe specified
deviceto listen, otherwise no device is addressed. Note that a device will
not switch to remote mode until it is addressed to listen.

Examples:

For BASIC/Quick Basic
DEVADDR%Y% - 4
CALL IEREMOTE (DEVADDR%0)
'Sets REN true and device 4 to remote mode

CALL IEREMOTE (NOADDR%)
'Sets REN line true

For C/C++
ieRemote (4);
/* Sets REN true and device 4 to remote mode */

ieRemote (NoAddr);
/* Sets REN true */

leReseat

Pur pose:

Thiscommand performsthel EEE 488.2 Reset protocol ontheentiresystem
and sends the * RST command to the listed devices.

Syntax:
Quick Basic - CALL ieReset (ADDRLIST%())
C, C++ - void ieReset(int far* AddrList)

WinDLL - ieReset(PC2AADDR CardID, PC2AADDR
AddrList, int numDev)

Return Value:
none
Comments:

This command causes the 488-PC2 to assert REN, pulse IFC for over 100
microseconds, output the universal Device Clear command and sends the
*RST command to all listed devicesin the AddrList. For the PC2 Win
DLL, the numDev must equal the number of listed addresses.

Caution - Check all non-IEEE 488.2 devices response to the *RST
command before putting them in the AddrList.

Examples:

For Quick Basic
DIM ADDRLIST%(1 TO 3)
ADDRLIST%(1)=2
ADDRLIST%(2)=5
ADDRLIST%(3)=3131
CALL ieReset (ADDRLIST%(1))

For C/C++

AddrList[3]={2,5,3131};
ieReset(AddrList);

6-45

leSend

Pur pose:

This command outputs user specified GPIB commands and datato the bus
to generate custom command sequences. TheieSend command is used to
address deviceswith secondary addresses, to establish multiplelisteners, to
pass control or to establish another talker.

Syntax:

BASIC/QB - CALL IESEND (CMDSTRING$)

Pascal - ieSend(var CmdString: string): integer;

C, C++ - intieSend (const char* CmdString)

WinDLL - ieSend (PC2ADDR CardID, LPSTR CmdString,
int ByteCnt)

Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:

CmdString is a string of standard IEEE 488 bus interface command
mnemonics separated by a space. The mnemonics are:

MLA My listen address (MyAddr)
MTA My talk address (MyAddr)
UNL, UNT Unlisten and Untalk
LISTEN n Listen devicen

TALK n Tak devicen

SECn Secondary Address n
DCL Device Clear

SDC Selected Device Clear
GET Trigger

GTL Go to Locd

LLO Local Lockout

PPC Parallel Poll Configure
PPD Parallel Poll Unconfigure
PPE Parallel Poll Enable
PPU Parallel Poll Disable

6-46

continued ieSend

SPE Serial Poll Enable

SPD Serial Poll Disable

TCT Take Control

DATA Unasserts ATN to send any subsequent
characters as data.

See Appendix A1 for more information about the above bus commands.
Recomendation - Always start the command sequences with UNL to
unlisten any unwanted listeners.

Examples:

For BASIC/Quick Basic
CMDSTRINGS$ = "UNL MTA LISTEN 4 SEC 01 DATA 'T1"
CALL IESEND (CMDSTRINGS$)
'sends string "T1" to device 4 secondary 1

CMDSTRING$ ="UNL MTA LISTEN 45 GTL"
CALL IESEND (CMDSTRINGS$)

‘addresses devices 4 and 5 to both listen, and triggers both
'devices

For C/C++
CmdsString = "UNL MTA LISTEN 4 SEC 01 DATA 'T1"
ieSend (CmdString);
/* sends 'T1' instruction to device 4 secondary 1 */

CmdStr ="UNL MTA LISTEN 45 GTL"
ieSend (cmdsStr);

/* addresses devices 4 and 5 to listen and
* triggers both devices

*/

6-47

1eServiceDisable

Pur pose:

This command disables user event service routines.

Syntax:

C, C++ - void ieServiceDisable (unsigned int EventCode)
Return Value:

None.

Bus Activity:

None

Comments:

EventCodeisanunsignedinteger representing oneor moreof thefollowing
service routines:

Value Disabled Service Routine

if command intended to disable error service

if command intended to disable time out service
if command intended to disable SRQ service

RN A

This command alows a C program to disable from one to three service
routinespreviously enabl ed by theieServiceEnablecommand. If EventCode
has a bit set for a service that is not enabled, the bit isignored.

Examples:
For C/C++

ieServiceDisable (1);
/¥ SRQ service disabled */

6-48

1eServiceEnable

Pur pose:

Installs user defined event-service routine(s). Use ieServiceDisable to
disable the service routine.

Syntax:

C, C++ - int ieServiceEnable (unsigned EventCode,
pGPIBService SRQServ [, pGPIBServiceTOutServ
[, pGPIBServiceErrServ]]);

Comments:

EventCodeisanunsignedinteger representing oneor moreof thefollowing
routines:

Value Service Routine

if command intended to install error service

if command intended to install time out service
if command intended to install SRQ service

RN A

Parameters- SRQServ, TOutServ & Err Serv: pointto user defined service
routines.

For Interpetive BASIC, Quick Basic or Pascal language programs, refer to
the interrupt handling section in their language description chapters.

6-49

1eServiceEnable continued

For C this command allows the user to install from one to three service
routinesinasinglecall. User defined service routine must be declared asa

far routine,

take no argument and return void. When designing a service

routine, the C user must pay attention to the following:

Rule of thumb for user' installed event-handler:

1

2.

Examples:

For C/C++

The user's handler may safely call PC2 routines for servicing.

The user's handler may safely call other routines.

Providedthosecalled routinesare stack-and-local base, they do
not have any side-affect and they are recursivable and do not
rely on any static and/or global variablesfor correct operation.

Theprovisioninrule#2 alsoappliesto chained routinesaswell.
That isacalled called called ... called routine.

Provision rules #2 and #3 applies to user designed routines as
well asruntime libraries.

Violationof rules#2 and#3isconsidered unsafeunlessthe user
can guarantee he doesn't call those called routinesin the event-
waiting-loop.

ieServiceEnable (1, UserSRQService);
/*to install SRQ Service Routine */

6-50

1eSPall

Pur pose:

Thiscommand performsaserial poll onthe specified device. Theeight bit
seria poll responseis returned as an integer with avalue of 0 to 255.

Syntax:

BASIC/QB - CALL IESPOLL (DEVADDR%, SRESP%)
Pascal - ieSPoll (DevAddr: integer): integer;

C, C++ - intieSPoll (int DevAddr)

WinDLL - ieSPoll (PC2ADDR DevAddr)

Return Value:

Serial poll response for Pascal, C/C++ and Win DLL commands.
Comments:

If 0< PrimAddr < 30thenthedriver addressesthe device asata ker, sends
it the seria poll enable command and reads back its status byte. After the
status byte has been read, the deviceis sent the serial poll disable command
and untalked. OtherwisetheDevAddr isout of rangeand anerror iscreated.

For Interpetive BASIC, Pascal and Win DLL, theresponseisa8bitsinthe
lower order byte with avalue of 0 to 255.

For Quick Basic and C/C++, theresponseis16 bits. Bit 15istheError flag,
bits14-8 arethe Error codes (seeieStatus) and bits 7-0 arethe device's serial
poll response.

15 14 87 0

0/1 Error codes, 0-9 Device resp, 0-255

6-51

1eSPoll continued

Examples:

For BASIC/Quick Basic
DEVADDR% = 04
CALL IESPOLL (DEVADDR%Y, SRESP%)
'SRESP% contains device 4's response to the serial poll

For C/C++

Sresp = ieSPoll (4);
/* SResp contains device 4's response to the serial poll */

6-52

ieSRQStat

Purpose:

This function returns an integer that indicates the logic level of the GPIB
SRQ line.

Syntax:

Quick Basic - ieSRQStat

C, C++ - bool ieSRQStat(void)
Return Value:

Logic level of GPIB SRQ line.

Bus Activity:

None

Comments:

Thisfunction returns the logic level for the GPIB interface signal SRQ. 1
= asserted, 0 = not asserted.

Examples:

For Quick Basic
SRQ% = ieSRQStat

For C/C++
SRQ = ieSRQStat();

6-53

leStatus

Pur pose:

This commands returns status information about the interface and the last
called command.

Syntax:
BASIC/QB - CALL IESTATUS (STATUSCODE%, STATUS%)
Pascal - ieStatus (StatusCode: integer): integer;
C, C++ - unsigned int ieStatus (int StatusCode)
WinDLL - ieStatus (PC2ADDR CardID,
int StatusCode)
Return Value:

Status response for Pascal, C/C++ and Win DLL commands.

Bus Activity:

None

Comments:

The StatusCode selects whether the command reads the registers of the
NEC7210 GPIB controller chip on the Interface, returnsdriver settings or

status information about the last called command. For BASIC and Quick
Basic, STATUS contains the command status.

The Status Codes are:
Status Code Status Contents
0-7 GPIB chip (NEC7210) registers0- 7.
8 Error Number of last called command.
9 Count of string bytes that are output or entered.
10 Timeout interval in milliseconds.
11 I/O port address of NEC7210.
12 Returns the Setting parameter of the last ielnit
command.

continued 1eStatus

Status Code 8 returns the following error codes:

Status

WNEFO

O©oo~NO O1h

Error

No error

Handshake timeout

Interface error

Called a command when not system controller or
controller-in-charge

Invalid passed parameter(s)

Break key used to quit handshake

Failed to allocate DMA buffer

Could not find a device requesting service

No acceptor present on the bus

Could not find 488-PC2 Card or 4818 Module

Refer to theieErrPtr command for additional information on reading error
codes and byte transfer counts.

Examples:

For BASIC/Quick Basic
STATUS CODE% =9 'Reads byte count
CALL IESTATUS (STATUSCODE%Y, STATUS%)
'STATUS% value is the number of bytes sent or received by
the last called command.

For C/C++

Status = ieStatus (9);
[* Status value is the number of bytes sent or received by the
last called command */

6-55

leTakeCtl

Pur pose:

TheieTakeCtl command changesthe I nterfacefrom astandby Controller to
an active Controller. The Interface takes control asynchronously,
synchronously or synchronously after sensing EOIl. This command is not
available for BASIC or Pascal language programs.

Syntax:

Quick Basic - CALL ieTakeCtl(MODE%Y)

C, C++ - int ieTakeCtl(int Mode)

Return Value:

Error code for C/C++ commands

Bus Activity:

INTERFACEtakes control and asserts ATN.

Comments:

The command ieTakeCtl causesthe Interface to take control of the bus. If
Mode=TC_ASYNC then the Interface takes control immediately without
regard for any existing datatransfer operations. If Mode=TC_SYNCthen
thelnterfacetakessynchronously by waitingfor any existing datahandshake
to be completed before asserting ATN. If Mode = TC_END then the
Interface takes control synchronously at the end of the next data handshake
that hasEOI asserted or handshakesthe EOSbyte. UseTC_ASYNCtotake

control when no handshakes exist such as after atimeout. Use TC_END to
take control after two devices have exchanged a data message.

Includefile
Value constant Method
0 TC_ASYNC Take Control Asynchronously
1 TC_SYNC Take Control Synchronously
2 TC_END Take Control Synchronously after

EOI asserted or EOS byte sensed.

6-56

continued ieTakeCtl

Caution:

Thel EEE-488 Standard recommendsagai nst taking control asynchronously
since there is a possibility that bus devices can erroneously interpet a data
caharacter as a bus command when ATN is asserted asynchronously.

Examples:

For Quick Basic

CALL ieTakeCtl (TC_END%)

' takes control after handshaking EOS or a byte with EQI
' asserted

For C/C++

ieTakeCtl(TC_SYNC);
/*takes control after the next handshake */

6-57

leTimeOut

Pur pose:

This command sets the GPIB handshake Timeout value in milliseconds.
This command should be called before executing any data transfers on the
bus.

Syntax:

BASIC/QB - CALL IETIMEOUT (TIME%)

Pascal - ieTimeOut (Time: integer): integer;

C, C++ - intieTimeOut (unsigned int Time)

WinDLL - ieTimeQOut (PC2ADDR CardID, unsigned int Time)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.

Bus Activity:

None

Comments:

The Time sets the maximum length of time in milliseconds that a bus
handshake can take beforethe handshakeisaborted. An aborted handshake

produceserror code 1 (seeieStatuscommand). Set TimetoOtodisable the
timeout function when single stepping the system.

Time Timeout
0 Disables the timeout function
1to 32,767 1to 32,767 milliseconds

-1t0-32,767 (65,536 + Time) milliseconds

Note that the Time period for Interpetive BASIC, Pascal and Win DLL
commands is dependent upon the CPU clock and will vary from PC to PC.
The Time period for Quick Basic and C/C++ commandsis independent of
the CPU clock and is therefore as accurate as the hardware permits.

6-58

continued ieTimeOut

Examples:

For BASIC/Quick Basic
NOTIMEOUT% =0
CALL IETIMEOUT (NOTIMEOUT%)
' disables timeout function

TIME% = 10000
CALL IETIMEOUT (TIME%Y)
' sets timeout to 10 seconds

For C/C++
ieTimeOut(0); /* disables timeout function */
ieTimeOut (10000); [* setstimeout to 10 seconds */

6-59

ieTrigger

Pur pose:

Thiscommand triggersaspecific device or sendsatrigger command (GET)
to the bus.

Syntax:

BASIC/QB - CALL IETRIGGER (DEVADDR%)
Pascal - ieTrigger (DevAddr: integer): integer;
C, C++ - intieTrigger (int DevAddr)

WinDLL - ieTrigger (PC2ADDR DevAddr)
Return Value:

Error code for Pascal, C/C++ and Win DLL commands.
Comments:
If 0<PrimAddr < 30thenthedriver addressesthe specified devicetolisten
and sends it the GET command, otherwise the driver outputs the GET
command to all currently addressed listeners.
Examples:
For BASIC/Quick Basic
DEVADDR% =4
CALL IETRIGGER (DEVADDR%) 'Triggersdevice4

CALL IETRIGGER (NOADDR%)

' Sends GET command to the bus
For C/C++
ieTrigger (4); [* Triggersdevice 4 */

ieTrigger (NoAddr); /* sends GET command to the bus*/

6-60

IEWaitSRQ

Pur pose:
Thisfunction suspends program activities and waitsfor SRQ to be asserted
or until timeout occurs. Thefunctionreturnsthelogical stateof theSRQline
at return time.
Syntax:
Quick Basic - ieWaitSRQ(SLEEPTIMEYb)
CIC++ - bool ieWaitSRQ (int SleepTime)
Return Value:
Oneif SRQ is set, zero otherwise.
Bus Activity:
None
Comments:
Thisfunction suspendsthe program for aspecified time period specified by
SleepTimeinmillisecondsor until SRQ isasserted, whichever comesfirst.
Returned value indicates state of the SRQ bus signal when the function
ended; 1 = asserted. If SleepTime is set to O, the function returns
immediately.
Examples:
For Quick Basic:
SLEEPTIME%=2 ' deep for 2 seconds
SRQSTATE=ieWaitSRQ (SLEEPTIME%)
For C/C++

SRQState = ieWaitSRQ(0);
/* SRQState isimmediately returned */

6-61

msDelay - Utility Function

Pur pose:

This Utility function suspends program execution for the specified timein
milliseconds.

Syntax:

Quick Basic - CALL msDelay CDECL(BYVAL ms%)
CIC++ - void_far msDelay (unsigned ms)
Return Value:

None

Bus Activity:

None

Comments:

Thisfunction usesthe system real time clock and isindependent of the CPU
clock frequency.

Examples:

For Quick Basic:
DelayTime% = 100
CALL msDelay(DelayTime%o)
‘delays program for 100 milliseconds

For C/C++

msDel ay(100)
/* delays program for 100 ms*/

6-62

Utility Function - icsTimer

Pur pose:

This Utility function provides the ability to read system time with a high
resolution.

Syntax:
Quick Basic - icsTimer& CDECL()
CIC++ - unsigned long_far icsTimer (void)
Return Value:
Number of 215 microsecond periods since last midnight.
Bus Activity:
None
Comments:
Returned valueis the number of 215 microsecond periods since midnight.
Since Quick Basic does not support unsigned numbers, if thereturned value
islessthan zero, it is actually:
4292967295-(absol ute of the returned value)

Examples:

For Quick Basic:
Time=icsTimer&

For C/C++

Time=icsTimer();
/* Time since midnight isimmediately returned */

6-63

iIsTimeOut - Utility Function

Pur pose:

This Utility function providesthe ability to set atime mark and then test to
seeif thereal timehasgone past thetime mark. Thisfunction should not be
confused with theieTimeout command which setsthe GPI B bus handshake
timeout value.

Syntax:

Quick Basic - isTimeOut% CDECL(BY VAL msMark%)

CIC++ - bool_far isTimeOut (unsigned msMark)

Return Value:

TRUE if system time has passed the previously set time mark, FALSE
otherwise.

Comments:

A call of theisTimeOut function with msMark # zero setsatime mark at
system time plusmsMark. All subsequent callswith msMark = zero test
to seeif the system time has passed the set time mark value. msMark isin
milliseconds

Examples:

For Quick Basic:
msMark% = 16000 ‘establishes a 16 second period
Status¥ = isTimeOut(msM ark%o) ' set the mark

'execute some program statements here
Status% = isTimeOut(0)
IF Status% = 1 THEN PRINT "Time elapsed”

For C/C++
Time = isTimeOut(16000); [*sets a 16 second time mark*/

[* execute some program statements here */

if (isTimeOut(0))
{print "Time Elapsed" ;
exit ;

6-64

Appendix

Appendix

Al

Al1l

Al2

Al13

A2

A2.2

A23

A2.4

|EEE 488 Bus Description
|EEE 488.1 Bus
| EEE 488.2 Standard

SCPI Commands

Troubleshooting & Repair
Troubleshooting Procedure
Board Tests

Repair

A-1

Page
A-2
A-2
A-8

A-12

A-15
A-15
A-18

A-20

Al |EEE 488 BUSDESCRIPTION (IEEE 488.1, |IEEE
488.2, SCPI)

The IEEE 488 Bus, also known as the GPIB bus (General Purpose
Instrument Bus), is a convenient means of connecting instruments and
computerstogether toform atest systemor totransfer data. ThelEEESTD
488.1 coversthe electrical and mechanical bus specifications and the state
diagramsfor each bus function. The |IEEE STD 488.2-1987 expanded on
theoriginal specification and established dataformats, common commands
for 488.2 compatibledevices, abasi ¢ statusreporting structure, and control -
ler protocols. Later, the SCPI standard developed a tree like series of
standard commandsfor programmabl einstrumentsand away of expanding
the status structure so that similar instruments by different manufacturers
can be controlled by the same program.

Al1l |EEE 488.1 Bus

ThelEEE STD 488 Bus, or GPIB asitiscommonly referred to, providesa
means of transferring data and commands between devices. The physical
portion of the busis governed by IEEE-STD 488.1 - 1978. Theinterface
functions for each device are contained within that device itself, so only
passive cabling is needed to interconnect the devices. The cables connect
al instruments, controllers and other components of the systemin parallel
tothesignal lineas shownin Figure A-1. Eight of thelines (DIO1-DIO8)
arereserved for thetransfer of dataand other messagesin abyte-seridl, bit-
paralel manner. Data and message transfer is asynchronous, coordinated
by the three handshake lines (DAV, NRFD, NDAC). The other fivelines
(ATN, REN, IFC, EOI and SRQ) control Bus activity.

DEVICE A DEVICE B DEVICE C
Able to Talk, Able to Talk Able to Listen
Listen and Control and to Listen

e.g. Signal

e.g. Computer e.g. DVM generator

IFC
ATN
SRQ
REN
EOl

Bus Control
Lines

v

DAV
Byte Transfer

NRFD —

NDAC Control Lines

Data Bus
(8 Lines)

Uy

DIO1-8

Figure A-1 |EEE 488 Bus

Al111 BusDevices 72

Devices connected to the bus may act as talkers, listeners, controllers, or
combinations of thethreefunctions, depending upontheir internal capabil-
ity.
A talker sends device dependent messages, i.e., data, status.
A listener accepts interface messages, bus commands and device-
dependent messages, i.e., setup commands, data.
A controller can sendinterface messagesto managetheother devices,
address devicesto talk or listen and command specific actionswithin
devices.

A talker might be adumb measuring devicelike asensor. A listener could
bean output devicelikeaprinter. However, most deviceshave bothtalker-
listener capability such asa DVM which accepts instructions and returns
data. Any 488.2 compatible device hasto be both atalker and alistener to
be able to respond to the 488.2 Common Commands.

Al.l1l2 Bus Controllers

Controllers are referred to as the Active Controller, the Controller-in-
charge (CIC) and the System Controller. The System Controller is the
controller that becomes active at power turn-on. The System Controller is
teh only controller in the system that can drive the REN and IFC lines and
istheinitial Controller-in-charge. Systems may have multiple controllers
but only one controller can be the Active Controller or CIC at atime. Ina
multiple controller system, control is'passed’ from the System Controller,
who wastheinitial controller, to aninactive controller by the Take Control
command. The Controller receiving this command becomes the Active
Controller (CIC) and the passing controller becomesan inactive controller.

Most GPIB systemshavejust onecontroller andthereisnever aneedto pass
control to another controller.

Al1.13 Device Addressing
The GPIB bushas both primary and optional secondary address capability.
Each GPIB device must have a unique primary address so it can be

addressed asalistener or asatalker. Thesecondary addressesprovideaway
to address multichannel hardware or special modes inside a device.

A-3

The GPIB address fieldsin Table A-lare 5 bits wide and have 32 unique
values. Vaues0to 30 canbeassignedtoany deviceasitsprimary address.
Value 31 isused asthe untalk or unlisten address and cannot be used by a
device. Controllershave an address so they can addressthemselvestotalk,
tolisten and to passcontrol. Traditionally, controllers have used addresses
0 (National Instruments) or 21 (Hewlett-Packard and | CS Electronics).

Devices traditionally have their primary address set by a small rocker
switch ontheir rear panel. Instrumentswith front panel displaysoften have
away of setting their address from the front panel. Some new instruments
whose firmware includes a SCPI command parser, can save their GPIB
address in EEPROM and have it changed by a command from the GPIB
Controller.

Al.l4 Data Transmission and Handshake Lines

Information istransmitted on the datalines under sequential control of the
three handshakelines(DAV, NFRD, NDAC). No stepinthe sequencecan
be initiated until the previous step is completed. Information transfer
proceeds asfast asthe devicesrespond (up to 1 Mbs) [Note 1], but no faster
than that allowed by the slowest addressed device. This permits several
devices to receive the same message byte at the same time. Although
several devices can be addressed to listen simultaneously, only one device
at atime can beaddressed asatalker. When atalk addressis put on thedata
lines, all other talkers are normally unaddressed.

When a device is addressed as a talker, it is alowed to send device-
dependent messages(e.g., data) whenthecontroller-in-chargesetsthe ATN
line false. The data messages are typicaly a series of ASCII characters
ending with a LF. The data messages may also be eight-bit binary
charactersterminated with EOI asserted whenthelast byteistalked ontothe
GPIB bus. The controller-in-charge must be programmed to correctly
respond to each device's message termination sequence to avoid hanging-
up the system or leaving characters that will be output when the deviceis
next addressed as a talker.

1. National Instrumentshasadvocated ahigher hadshakeratewhich hasbeen voted
down by Hewlett-Packard, | CS and othersashaving potential problemswith older
divices.

A-4

Al1.1l5 Interface Management Lines

ATN (attention) is set true by the controller-in-charge while it is sending
interface messages or device addresses. The messages are transmitted on
the seven least significant datalines and arelisted in the MSG columnsin
Table A-1. The Interface Message bytes and Address codes are the same
asthe 128 ASCII character set. The ATN lineis asserted when sending
Interface Messages or Addresses and off when sending data.

| FC (interfaceclear) issent by thesystem controller and placestheinterface
system in a known quiescent state with all devices unaddressed.

REN (remoteenable) issent by the system controller and isused with other
interface messages or device addresses to select either local or remote
control of each device.

SRQ (servicereguest) is sent by any device on the bus that wants service,
such as counter that has just completed atime-interval measurement. EOI
(end or identify) is used by adeviceto indicate the end of amultiple-byte
transfer sequence. When acontroller-in-charge setsboththe ATN and EOI
linestrue, each device configured to respond to aparallel poll indicatesits
current status on the DIO line assigned to it.

Al.16 I nterface M essages and Bus Commands

TableA-1showsthelnterface Messagesand Device AddressesintheM SG
columns of the Table and their definitions below the table. Interface
Messages in the Universal Command Group and will be accepted by all
devicesat any time. Interface M essagesinthe Addressed Command Group
and will only be accepted by devicesthat have been addressed as alistener
and are normally directed to a specific device.

Al.17 System Configuration Guidelines
Thedesigners of the |EEE 488 Bus madeit virtually fool proof to assemble
atroublefreesystem aslong astheuser followsthe Standard. Therulesthat

the user must observe are;

1. Limit the number of deviceson the GPIB busto 15 devicesincluding
the bus controller.

A-5

9-v

ASCII -- IEEE 488 BUS MESSAGES (COMMANDS AND ADDRESS) HEX CODES

MSD 0 1 2 3 4 5 6 7
LSD ASCIl | MSG | ASCII | MSG | ASCII| MSG1 | ASCII | MSG1| ASCII | MSG1| ASCIl |MSG1| ASCII | MSG | ASCII | MSG
0 NUL DLE SP | 00 0 16 | @ | 00 P 16 : A p A

1 SOH | GTL | DC1 | LLO | ! 01 1 17 | A 01 Q 17 a N q
2 STX DC2 02 2 18 | B 02 R | 18 b f r a
3 ETX DC3 # 03 3 19 | C 03 s 19 c 3 s 8
4 EOT | SDC | DC4 | DCL| $ 04 4 20 | D 04 T 20 d 8 t 3
5 ENQ | PPC | NAK | PPU| % | 05 5 21 E 05 U 21 e g u g
6 ACK SYN & | 06 6 22 F 06 Y, 22 f P v P
7 BEL ETB 07 7 23 | G 07 | w | 23 g a w a
8 BS | GET | CAN | SPE | (08 8 24 | H 08 X 24 h z X z
9 HT | TCT | EM | spD|) 09 9 25 [09 Y 25 i I y 5
A LF SUB * 10 : 26 J 10 z 26 j 5 z 5
B VT ESC + 11 : 27 K 11 [27 k P (z
C FF FS , 12 < 28 L 12 \ 28 [Z | Z
D CR GS - 13 = 29 | ™ 13] 29 | m =) y
E e} RS 14 > 30 | N 14 A 30 n ~
F S| us / 15 2 |UNL| O 15 _ JuNT| o v |DEL| v
ADDRESSED UNIVERSAL LISTEN ADDRESS GROUP TALK ADDRESS GROUP SECONDARY COMMAND
COMMAND COMMAND GROUP
GROUP GROUP

PRIMARY COMMAND GROUP (PCG)

Notes: 1. Device Address messages shown in decimal
2. Message codes are:
DCL -- Devices Clear

GET -- Device Trigger

GTL -- Go to Local
3. ATN off, Bus data is ASCII; ATN on, Bus data is an IEEE MSG.

LLO -- Local Lockout
PPC -- Parallel Poll Configure
PPU -- Parallel Poll Unconfigure

SDC -- Selected Device Clear
SPD -- Serial Poll Disable
SPE -- Serial Poll Enable

S3IOVSSIIN

SS34AAY ANV ANV ININOD 887 3331

T-v31dvl

2. Maximum total cable length of 20 meters.

3. Cablelenght between devices and should be 2 metersor lessto obtain
the full 1 Mbyte/second data transfer rate.

4. More than 50% of the devices must be powered on. (Power on al
devicesfor full1 Mbyte/second data transfer)

Use Bus Extenders or Expandersto increase the cablelength of number of
devices on the bus. Extenders and Expanders are available from ICS.

Al1.1.8 M echanical and Electrical I nterface

Devices on the bus are normally interconnected by cables with dual male/
female connectors at each end to allow easy cable stacking. The 24
conductor cable pinouts are shown in Figure A-2. Signal levelsare 0 and
3.3 Vdc with 0 being the logic true level. Cable connectors are modified
Amphenol 24 pin Blueribbon style connectors(57-30240) with metric jack
SCrews.

DIO1 113 DIOS
DIO2 2|14 DIO6
DIO3 3[15 DIO7
DI04 4]16 DIO8
EOl 5/17 REN
DAV 6]18 GND (TW PAIR W/DAV)
NRFD 7|19 GND (TW PAIR W/NRFD)
NDAC 8|20 GND (TW PAIR W/NDAC)
IFC 921 GND (TW PAIR W/FC)
SRQ 10]22 GND (TW PAIR W SRQ)
ATN 11(23 GND (TW PAIR W/ATN)
SHIELD 12[24 SIGNAL GROUND

Figure A-2 GPIB Signal-Pin Assignments
A-7

Al.2 |EEE 488.2 STANDARD
Al.2.1 |EEE 488.2 M essage Formats

The |EEE 488.2 Standard was established in 1987 to standardize message
protocols, status reporting and define a set of common commands for use
onthel EEE 488 bus. | EEE 488.2 devicesare supposed to receive messages
in a more flexible manner than they send. A message sent from GPIB
controller to GPIB deviceiscalled: PROGRAM MESSAGE. A message
sent from deviceto controller iscalled: RESPONSE MESSAGE. Aspart
of the protocol standardization the following rules were generated:

) Semicolons are used to separate messages.

) Colons are used to separate command words.

) Commas are used to separate data fields.

ni> Linefeed and/or EOI on last character terminates a
'‘program message’. Linefeed (ASCII 10) and EOI
terminates a RESPONSE MESSAGE.

*) Asterisk defines a 488.2 common command.

(? Ends a query where areply is expected.

—~ A~~~

JAY

Al22 |EEE 488.2 Reporting Structure

With |EEE 488.2, statusreporting wasenhanced fromthe simpleserial poll
response byte in IEEE 488.1 to the multiple register concept shown in
Figure A-3. The | EEE 488.2 Standard standardized the bit assignmentsin
the Status Byte Register, added eight more bits of information in the Event
Status Regi ster and introduced the concept of summary bitsreporting tothe
StatusByte Register. The Statusand Event registershaveenabling registers
that can control the generation of their summary reporting bits and ulti-
mately SRQ generation. Each 488.2 device must implement a Status Byte
Register, a Standard Event Status Register and an Output M essage Queue
asshowninFigureA-3. A 488.2 compliant devicemust havethisminimum
status reporting structure and may include any number of additional
condition registers, event registers and enabling registers providing they
follow the model shown in Figure A-3.

A-8

S
i ©
= _ o
858 £¢g
|7 By =) S o
e Wimag 5 §O
c 2 T < 0 o c
o c A = =
O o g © w9 8
8 TE38>3¢8
s 852338¢8¢8
£ S0dod X0
[716[5[41312]1]0] crenomuan
Event Status Register
l *ESR?
le——(&
P
% H @ Queue
= H Vs Not-Empty
I)
ks S —
=y 0
S 3
- K&D
L E)
& L
Y a w
Standard Output Queue
Event Status

[7]6]5]a[3]2]1]o] Enable

—

Register
*ESE <NRf>
*ESE?

Service
Request
Generation

o

Logical OR

D

<——Read by Serial Poll

(777{ 7 6S‘ESB‘MA\/‘ 3‘ 2‘ 1‘ oI Status Byte

I s§ Register

<—— Read by *STB?

L

(5 [a2 [t o] S ees v e

Figure A-3 488.2 Required Status Reporting Capabilities

Al

Al1.2.3 |EEE 488.2 Common Commands

The 488.2 specification al so mandated alist of common commandsthat all
deviceswill support. All of the Common Commands start with an asterisk.
Commandsthat end with aquestion mark are queries. Query responsescan
be an ASCII number or an ASCII string. Other numerical formats such as
HEX or Binary arelegal aslong asthe device supportsthe required ASCI|
format. These commands are:

*CLS Clear Status Command
*ESE Standard Event Status Enable Command
*ESE? Standard Event Status Enable Query
*ESR? Standard Event Status Register Query
*IDN? | dentification Query
*OPC Operation Complete Command
*OPC? Operation Complete Query
*RST Reset Command
*SRE Service Request Enable Command

0 *SRE? Service Request Enable Query

11 *STB? Status Byte Query

12 *TST? Sef-Test Query

13 *WAI Wait-to-Continue Command

P OO ~NO O, WNPRE

In addition to the above common commands, devices that support parallel
polls must support the following three commands

*ST? Individual Status Query?
*PRE Parallel Poll Register Enable Command
*PRE? Paralel Poll Register Enable Query

Devicesthat support Device Trigger must support thefollowing commands:
*TRG Trigger Command
Controllers must support the following command:
*PCB Pass Control Back Command
Devices that save and restore settings support the following commands:

*RCL Recall configuration
*SAV Save configuration

A-10

Al1.2.4 |EEE 488.2 Differences From | EEE 488.1

The user who is familiar with the older 488.1 devices should take the
following differences into account when programming a 488.2 device.

A 488.2 device outputs the Status Byte Register contents plus the RQS bit
inresponsetoaseria poll. TheRQShbitisreset by theserial poll. Thesame
488.2 device outputs the Status Byte Register contents plusthe MSShitin
responseto a* STB? query. The MSS bit is cleared when the condition is
cleared.

488.2 restricts the Device Clear to only clearing the device's buffers and
pending operations. It doesnot clear the Status Reporting Structure or the
output lines. Use* CLSto clear the Status Structureand *RST or *RCL to
reset the outputs.

488.2 commands are really special data messages and are executed by the
device'sparser. Alwaysalow sufficient timefor the parser to execute the
commands before sending thedevicea488.1 command. i.e. aDeviceClear
sent too soon will erase any pending commands and reset the parser.

Enable Register values are only saved and restored if the * PSC command

is0. A *PSC command of 1 causes zeros to be loaded into the enable
registers when the unit is next reset or powered on.

A-11

Al3 SCPI COMMANDS
A1.3.1 Introduction

SCPI (Standard Commands for Programmable | nstruments) builds on the
programming syntax of 488.2 to give the programmer the capability
handling awidevariety of instrument functionsinacommon manner. This
gives al instruments a common "look and feel".

SCPI commands use common command words defined in the SCPI speci-
fication. Control of any instrument capability that isdescribedin SCPI shall
be implemented exactly as specified. Guidelines are included for adding
new defined commands in the future as new instruments are introduced
without causing programming problems.

SCPI isdesigned to belaid on top of the hardware - independent portion of
the IEEE 488.2 and operates with any language or graphic instrument
program generators. The obvious benefits of SCPI for the ATE program-
mer is in reducing the learning time on how to program multiple SCPI
instruments since they all use acommon command language and syntax.

A second benefit of SCPI isthat itsEnglish like structure and words are sel f
documenting, eliminating the needs for comments explaining cryptic
instrument commands. A third benefit is the reduction in programming
effort to replace one manufacturer's instrument with one from another
manufacturer, where both instruments have the same capabilities.

Thisconsi stent programming environment i sachieved by theuse of defined
program messages, instrument responses and data formats for all SCPI
devices, regardless of the manufacturer.

Al1.3.2 Command Structureand Examples

SCPI commands are based on a hierarchical structure that eliminates the
need for most multi-word mnemonics. Each key word in the command
stepsthe device parser out along the decision branch - similar to asquirrel
hopping from the tree trunk out on the branchesto the leaves. Subsequent
keywordsare consideredto beat the samebranchlevel until anew complete
command is sent to the device. SCPI commands may be abbreviated as
shown by the capital lettersin Figure A-4 or the whole key word may be

A-12

used when entering a command. Figure A-4 shows some single SCPI
commands for setting up and querying a serial interface.

SYSTem:COMMunicate:SERial:BAUD 9600 <nl>
Sets the baud rate to 9600 baud

SYST:COMM:SER:BAUD? <nl>
Queries the current baud setting

SYST:COMM:SER:BITS 8 <nl>
Sets character format to 8 data bits

Figure A-4 SCPI Command Examples

Multiple SCPI commands may be concatenated together as a compound
command using semi colons as command separators. The first command
isalwaysreferencedtotheroot node. Subsequent commandsarereferenced
to the same tree level as the previous command. Starting the subsequent
command with a colon putsit back at the root node. |EEE 488.2 common
commandsand queriescan befreely mixed with SCPI messagesinthesame
program message without affecting the above rules. Figure A-5 shows
some compound command examples.

SYST:COMM:SER:BAUD 9600; BAUD? <nl>

SYST:COMM:SER:BAUD 9600; :SYST:COMM:SER:
BITS 8 <nl>

SYST:COMM:SER:BAUD 9600; BAUD?; *ESR?; BIT 6;
BIT?; PACE XON; PACE?; *ESR? <nl>

Figure A-5 Compound Command Examples
A typical response would be: 9600; 0; 8; XON; 32 <nl>
Theresponseincludesfiveitemsbecause the command contains 5 queries.
The first item is 9600 which is the baud rate, the second item is ESR=0
which meansno errors (so far). Thethird itemis8 (bit/word) whichisthe
current setting. The BIT 6 command was not accepted because only 7 or 8

are valid for this command. The fourth item XON means that XON is

A-13

active. Thelastitemis32 (ESR register bit 5) which meansexecution error
- caused by the BIT 6 command.

A1.3.3 Variablesand Channel Lists

SCPI variables are separated by a space from the last keyword in the SCPI
command. The variables can be numeric values, boolean values or ASCI|
strings. Numeric values are typically decimal numbers unless otherwise
stated. When setting or querying register values, the decimal variable
representsthe sum of thebinary bit weightsfor thebitswithalogic'1' value.
e.g. adecimal value of 23 represents 16 + 4 + 2+ 1 or 0001 0111 in binary.
Boolean values can be either 0 or 1 or else OFF or ON. ASCII strings can
be any legal ASCII character between 0 and 255 decimal except for 10
which isthe Linefeed character.

Channel listsare used asaway of listing multiple values. Channel listsare
enclosed in parenthesis and start with the ASCI| '@' character. Thevalues
are separated with commas. Thelength of the channel list isdetermined by
theunit. A rangeof valuescan beindicated by thetwo end values separated
by acolon. eg.

(@1,2,3,4) lists sequential values
(@ 1:4) shows a range of sequential values
(@ 1,5,7,34) listsrandom values

Figure A-6 Channel List Examples

Al1.3.4 Error Reporting

SCPI providesameansof reporting errorsby responsestothe SYST:ERR?
guery. If the SCPI error queueisempty, theunit respondswith 0, "Noerror"
message. Theerror queueiscleared at power turn-on, by a*CLS command
or by reading all current error messages. The error messages and numbers
aredefined by the SCPI specification and arethe samefor all SCPI devices.
A1.3.5 Additional Information about SCPI

For moreinformation about SCPI refer to the SCPI Standard or to the SCPI
Consortiun in care of Bodie Enterprises, LaMesa, CA, (619) 697-8790

A-14

A2 TROUBLESHOOTING AND REPAIR
A21 INTRODUCTION

Thissection providestroubl e shooting and repair information for the M odel
488-PC2 Card.

A22 TROUBLESHOOTING PROCEDURE

If the installation was successful, the majority of problems are due to a
misunderstanding of the GPIB commands, theformat the different devices
use for datamessages (especially the terminators), and incorrect program-
ming. Some system faultsare caused by poor cabling contacts, overly long
cables and mixing fast and slow handshake devices on the same bus. The
remedy for theselast three problemsisto keep the Busconnectorscleanand
tight, follow the IEEE-488 Standard for cable lengths and to check the
devices specifications to avoid mixing devices with different handshake
speeds on the same bus. Older devices with open collector data drivers
should not be used with a high speed Bus Controller.

Thebest solutionfor thefirst threeproblemsisto read each device'smanual
before starting the program to gain an understanding of the device'sunique
setup requirementsand command/dataformats. UseaKeyboard Controller
program (see Getting Started) to test a device's response to unfamiliar
commands before using it in a program. New GPIB users should read
Appendix Al and Section 4 of thismanual. The Troubleshooting Guidein
Table A-2 lists the symptom, probable cause and suggested corrective
action for some of the more common bus problems.

A-15

TABLE A-2 TROUBLESHOOTING GUIDE

Symptom

Possible Fault

Action or Check

Computer will not
boot up after board
installed

Board not correctly
placed in connector

Other boards loose

Check card to be sure it
isfirmly seated in the
connector

Check other boardsto see
that they were not dis-
turbed.

I/0O Address Conflict

Check computer for

I/O address conflict and
reassign the 488-PC2 to
another address

Computer hangs up
when calling driver
routines

|O addressincorrect or
does not match program
setting

Check device manager
settings for conflicts

Check valuein Init com-
mand Setting parameter

Card unable to
control instruments

Installation fault

Open Bus Cable

Instrument Power

Instrument Address

Check Device Manager
to be sure the computer
recognizes the card.

Check Bus Cable connec-
tions

Check Instrument

Check instrument address
setting.

Instrument does not
respond

Wrong instrument
address

Address setting on the
device

Address setting used in
the program.

Device address conflicts
with controller's address

A-16

TABLE A-2 TROUBLESHOOTING GUIDE

(CONTINUED)

Symptom Possible Fault Action or Check
Bad bus connections Check bus with bus ana-
lyzer or substituteaknown
good instrument
Wrong instrument Verify with instrument
programming sequencg manual
Test with Keyboard Con-
troller. Start with simple
commands like *idn?
Missing escape Instrument needs an
sequence an escape sequence be-
fore recognizing com-
mands
Bad or corrupted Bad or dirty GPIB Check Bus Cable
data Bus Cable

Clean Cable Connectors

Instrument hangs up
when sends data out

Instrument output
control not reset

Instrument output
terminates on wrong
characters

Send instrument a
Selective Device Clear

Verify instrument output
terminator matches what
the program expects. See
theieEOL command.

A-17

A2.3 BOARD TESTS
A2.3.1 General tests

If the GPIB Controller appears to have suddenly failed, check the Device
Manager to be sure that it is still installed. Be sure the card is physically
plugged into the computer. Cable stresses can cause the card to become
loose.

Usethe Keyboard Controller program and aknown good deviceto test the
GPIB controller. Read back the device's IDN message and verify that all
of the characters are correct and that there are no dropped bits.

A2.3.2 BASIC Test Program

The 488.2 DOS Driver Disk contains a board test routine in the BASIC
directory that verifiesmost of the 488-PC2'scircuits. Thisprogram checks
thecard'sinternal databus, GPIB controller chip, theinterrupt andtheDMA
logic. Of necessity, this program is limited to only being able to check
functions that are not being used by the other devices, i.e. it cannot check
DMA level2 with afloppy disk controller in the system.

Table A-3liststheboard test errorsand the corrective action. When thetest
isrun, any errorsaredisplayed onthemonitor. Incaseof aconflict between
thetest programand Table A3, , the board test program error messagestake
precedence over thosein Table A-3. Check the BASIC readmefilefor any
changes to the Board Test Program.

A2.3.3 PC2TEST Program

TheUtility Directory containsatest programthat checksthe488-PC2'sdata
and signal lines for boards at 1/0 address 02E1. This program tests some
of the 488.2 logic that was added after the BASIC test waswritten. To run
the PC2TEST Program, disconnect any GPIB bus cables from the card.
Select the Utility directory and type PC2TEST at the DOS prompt. The
program will display any errorsit finds on the PC monitor.

A-18

TABLE A-3 BOARD TEST ERROR CODES

Error | Error Cause Correction
Code
1 Unable to access Hardware failure Replace card
the 488-PC2
Data bus fault Check internal bus
for shorts
Bus transceiver Check data
failure transceiver
Decoder failure Replace PAL
2 Unable to access Bad 1/0 address Check other cards
card's I/O address selection I/O addresses
Hardware failure Check CMD latch
setting
Defective GPIB chip| Replace GPIB chip
40 Interrupt level failurg IRQ Switch value Verify IRQ switch
wrong setting
Interrupt level not Other devicesin the
available for use PC using that level
DCDR P4l failure Replace PAL
GPIB chip failure Replace GPIB con-
troller
50 DMA channel failurg DMA switch value Verify DMA switch

DMA channel not
available for use

DCDR P4l failure

GPIB chip failure

Other devicesin the
PC using the chan-
nel

Replace PAL

Replace GPIB con-
troller

A-19

A24 REPAIR AND RETURNING FOR REPAIR

Repair of the 488-PC2 Card is done by returning the unit to the factory or
toyour local distributor. Unitsinwarranty should alwaysbereturnedtothe
factory or else repaired only after receiving permission from an ICS
customer service representative.

When returning aunit, aboard assembly, or other productsto |CSfor repair,
it is necessary to go through the following steps:

1

Contact the ICS customer service department and ask for a
return material authorization (RMA) number. AnlCSapplica-
tions engineer will want to discuss the problem at thistimeto
verify that the unit needsto be returned, or to assist in correct-
ing the problem. We have discovered that morethan one-third
of thedifficultiescustomerscall about can beresolved over the
phone as opposed to returning a unit for repair.

Write adescription of the problem and attach it to the material
beingreturned. Describetheinstallation, systemfailure symp-
toms, and how it was being used. If theitem being returnedis
a board assembly, describe how you isolated the fault to it.
Include your name and phone number so we can call youif we
haveany questions. Remember, we need to locatethe problem
in order to fix it.

Pack the item with the fault description in abox large enough
to accommodate aminimum of two inches of packing material
on all four sides, the top, and the bottom of the box. Securely
seal the box.

Mark the shipping label to the attention of RMA # . The
RMA number isvery important sinceit isour way of identify-
ing your unit in order to return it to you.

Ship the box to ICSfreight prepaid. |CS does not pay freight

toreturntheunittoI1CS, but will prepay thefreight to returnthe
repaired item to you.

A-20

Index

Symbol
ymbols A

ABORT command 9-7
Accessories 2-9

488-PC2
Compatibility 1-2
Description 2-1

DMA Operations 4-12 Address _
Features 2-1 Switch setting 1-7

Shipment Verification 1-2 ALLSPOLL command 9-8, 9-9
Specifications 2-6 Approvals 2-8

Switch Settings 1-7 Architecture
488.2 Driver 488-PC2 2-6
Description 2-2 B
DMA data transfers 4-11
DOS Support 3-4 Backups 1-4
Features 2-2 BASIC
Quick Reference table3-6 Directory contents 5-2
Supported Languages2-3 PC2 interrupts 5-5
Utilities 3-5 BASIC Drivers 5-1
WIN16 Components 3-3 Installation 5-1
WIN32 Components 3-1 Programming 5-3
488.2 Drivers Using interrupts 5-5
Short Form Command List3-6 Board Test Routines
488.2 Programming 4-9 BASIC Test Program
488.2 Protocols 4-9 Error Codes A-19

Bodie Enterprises A-14

BORC_CPP directory contents,
table 5-20

Bus device functions 2-5

Index-1

C

C/C++
Demo program 5-24
Demo programs 5-18
Installation 5-18
Interrupts 5-22
Library files 5-18
Programming 5-18, 5-20
Using 488-PC2 as a deviceb-
23
Using the IEEE-488 library
functions 5-21
CardiD 4-2
Certifications 2-8
CLOSE command 9-10
Command
ABORT 9-7
ALLSPOLL 9-8, 9-9
Calling Conventions 4-4
CLOSE 9-10
Common Parameters9-2
Constants and default val-
ues 9-1
Conventions 9-1
Default constant values,
table 9-4, 9-5
DEVCLR 9-11
DEVICE 9-12
ENTER 9-13, 9-14
ENTERB 9-15, 9-16, 9-17
EOL 9-18,9-19
Error Codes 9-5
ERRPTR 9-20
FINDLSTN 9-24, 9-25
FINDRQS 9-26, 9-27
GOTOSTBY 9-28
INIT 9-31, 9-32, 9-33
LLO 9-34
LOCAL 9-35, 9-36
OUTPUT 9-37
OUTPUTB 9-38, 9-39
PASSCTL 9-40

PPOLL 9-41
PPOLLC 9-42
PPOLLU 9-43
Reference 9-1, 9-6
REMOTE 9-44
RESET 9-45
SEND 9-46, 9-47
SERVICEDISABLE 9-48
SERVICEENABLE 9-49, 9-50
SPOLL 9-51, 9-52
STATUS 9-54, 9-55
Error Codes 9-55
Status Codes 9-54
TAKECTL 9-56, 9-57
Terminators 9-3
TIMEOUT 9-58, 9-59
TRIGGER 9-60
Usage, advanced
488-PC2 DMA operations 4-
12
Passing control 4-11
Utility Functions 9-62
DELAY 9-62
TIMEOUT 9-64
TIMER 9-63
Command and address messages,
IEEE 488 A-6
Commands
488-PC2 Table 3-6, 3-7, 3-
8, 3-9, 3-10, 3-11
Default Value Table 9-3
Driver 3-6
Return Values 9-5
SCPI A-12
SCPI, example A-13
Common Command Parameters 9-2
Compatibility with earlier 488-PC2
Products 1-2
Control
Passing 4-11
Controller
Functions 2-4

Index-2

D

DEVCLR command 9-11
Device
Program considerations4-14
Using a PC 4-13
DEVICE command 9-12
Direct Memory Access. See DMA
DLL. See PC2 Windows DLL
DMA 2-6
488-PC2 operations4-12
Channel settings 1-10
Data Transfer Rates2-7
Features 4-11
Switch setting 1-9
Transfer rates 2-7
DOS
C Language Programmings-
18
Interpretive Basic 5-1
Pascal Programming5-13
Quick Basic Programming5-7

E

ENTER command 9-13, 9-14

ENTERA command 9-15

ENTERB command 9-16, 9-17

EOL command 9-18, 9-19

ERRPTR command 9-20

EVENTSTAT function 9-21, 9-
22, 9-23

F

FINDLSTN command 9-24, 9-25
FINDRQS command 9-26, 9-27
Function
EVENTSTAT 9-21, 9-22, 9-23
GPIBSTAT 9-29, 9-30
SRQSTAT 9-53
WAITSRQ 9-61
Functions
Bus Device 2-5
Controller 2-4

G

General information 2-1
GOTOSTBY command 9-28
GPIB

Command terminators9-3

Pinouts A-7

System Configuration

Guidelines A-5

GPIB Bus

Signal-Pin AssignmentsA-7
GPIB Keyboard

Operation 1-12
GPIB Programming 4-1
GPIBSTAT function 9-29, 9-30

H
Hardware Installation 1-5
|

[/0 Address
Selection 1-7
Switch settings 1-7
Wait State Switch Setting1-9
|EEE 488
Command and address
messages A-6
Message formats
(IEEE 488.2) A-11
|EEE 488 Bus
488.2 required status reporting
capabilities A-9
Commands A-5
Controller capabilities 2-4
Controllers A-3
Data Transmission A-4
Description A-2
Device Addressing A-3
Devices A-3
Electrical Pinouts A-7
Interface MessagesA-5
Management Lines A-5
Mechanical Interface A-7
PC2 Device Capabilities2-5

Index-3

Specifications 2-4
System Guidelines A-5
|EEE 488 Interface
Bus Figure A-2
SCPI command structure and
examples A-12
SCPI commands A-12
SCPI error reporting A-14
|EEE 488.1 Bus Description A-2
|IEEE 488.2 STANDARD A-8
Common CommandsA-10
Differences from 488.1 A-11
Message FormatsA-8
Reporting Structure A-8
Information, general 2-1
INIT command 9-31, 9-32, 9-33
Installation 1-5
Hardware 1-5
Software 1-6
DOS 1-6
Testing GPIB Interface 1-15
Interactive Command Line Program
PC2-KYBD 1-14
Interrupts
Level settings
488-PC2 1-10
PC2 BASIC 5-5
PC2 Quick Basic 5-11
PC2 settings 2-6
Quick Basic 5-11
Using in BASIC 5-5
using in C 5-22

K
Keyboard Controller Program 1-12
L

Languages
Supported 2-3
LLO command 9-34
LOCAL command 9-35, 9-36

M

MSC_CPP directory contents,
table 5-19
Multiline Messages A-5

O

OUTPUT command 9-37
OUTPUTA command 9-38
OUTPUTB command 9-39

P

Pascal
BTPASCAL Directory 5-14
Installation 5-13
Microsoft Programming 5-17
MSPASCAL Directory 5-15
Programming 5-13, 5-15
Turbo Programming 5-16
PASSCTL command 9-40
PC
Interrupt
PC2 2-6
Using as a device4-13
PC2_Kybd 1-14
Operation 1-14
Physical
pPC2 2-7
PPOLL command 9-41
PPOLLC command 9-42
PPOLLU command 9-43
Primary Address 4-2
Program
C/C++
Demo program 5-24
Device considerations4-14
Program Examples 4-15
Visual Basic 4-15
Visual C++ 4-18

Index-4

Programming 4-1

488.2 Protocols 4-9

Basic GPIB Techniques4-1

Clearing a device 4-6

Confirming a device's pres-
ence 4-9

Device Addressing 4-2

Examples 4-15

Finding devices 4-9

Initializing the Bus 4-5

Multiple 488-PC2 Cards 4-8

Notes & Cautions 4-11

Program Outline 4-1

Reading Data 4-6

Reading device status4-6

Sending Data 4-5

Sending GPIB Bus com-
mands 4-7

Timeouts 4-8

Q

Quick Basic
Directory contents 5-8
Includes 5-10
Installation 5-7
Interrupts 5-11
Interrupts, PC2 5-11
Parameters 5-11
Programming 5-7, 5-9

R

REMOTE command 9-44

Repair A-20. See also Returning
for Repair

RESET command 9-45

Returning for repair A-20

Rocker

Assignments and switch loca-

tion 1-8

S

SCPI
Additional Information A-14
Channel list A-14
Examples A-14
Command structure and
example A-12
Commands
Example A-13
Commands and queriesA-12
Compound commands
examples A-13, A-14
Error Reporting A-14
Error reporting A-14
Variables A-14
Secondary Address 4-2
SEND command 9-46, 9-47
SERVICEDISABLE command 9-48
SERVICEENABLE command 9-
49, 9-50
Settings
Address Switch 1-7
DMA channel 1-10
DMA Switch 1-9
Interrupt level 1-10, 1-11
Wait delay 1-9
Wait State Switch 1-9
Shipment verification 1-2
Signal-Pin assignments
GPIB bus A-7
Software
Organization 1-11
Software License 1-3
Specifications
Architecture
PC2 2-6
Bus device functions 2-5
DMA transfer rates 2-7
PC interrupt 2-6
Physical
PC2 2-7
SPOLL command 9-51, 9-52
SRQSTAT function 9-53

Index-5

Starting 1-1
Status Code 9-54
STATUS command 9-54, 9-55
Switch
Address Settings 1-7
DMA setting 1-9
Location and rocker assign-
ments 1-8
Wait State Setting 1-9

T

TAKECTL command 9-56, 9-57
Terminators
GPIB command 9-3
Testing
488-PC2 Installation 1-15
TIMEOUT command 9-58, 9-59
TRIGGER command 9-60
Troubleshooting
BASIC Board Test ProgramA-
18
Board Test Routines
Basic Test Error CodesA-19
Board Tests A-18
Guide A-16, A-17
PC2TEST Program A-18
Procedure A-15
Troubleshooting and Repair A-15
Troubleshooting Guide A-16, A-17

\Y
Visual Basic examples 4-15
W
Wait
Delay settings 1-9
State switch setting1-9

WAITSRQ function 9-61
Warranty 1-3

Index-6

