
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-2

INTRODUCTION

ICS's new 8065 Ethernet-to-GPIB Controller is a VXI-11 compatible
device. The 8065 responds to all VXI-11.2 interface commands to
operate as an IEEE-488.1 GPIB Controller and control the GPIB
interface. This includes transfer data to/from a device, pulse the IFC
line, send Device Clear and Device Triggers, set/reset REN, set/reset
ATN, perform Serial Polls and to read back the status of the REN,
NDAC and SRQ lines. The 8065 also responds to the VXI-11.3
device commands as a Ethernet-to-GPIB gateway to communicate
with a GPIB instrument. Note that VXI-11.3 commands only let
the 8065 communicate with a GPIB device and do not include the
GPIB Controller functions.

VISA layers or libraries were created in the early 1990s to give the
Test and Measurement community a standard Application Interface
that could be called by anyone's test program. The VISA layers con-
nected with the manufacturer's existing drivers and also provided
a VXI-11 client output. VISA libraries were initially used with
graphical programs like Agilent's VEE and National Instruments'
LabView. Later other programmers begin writing C and Visual
Basic language programs with VISA calls.

The problem is most VISA libraries handle VXI-11.3 commands
with only minimal or no VXI-11.2 support. This limits the 8065's
use as a GPIB Controller since without the VXI-11.2 interface
commands, you can not implement IEEE-488.2 protocols like
FindLstn nor do simple IEEE-488.1 functions such as writing GPIB
Command strings.

AGILENT'S VISA/SICL LIBRARY

Hewlet-Packard (now Agilent) had written their SICL library before
the VISA Specification was generated. Their SICL Library was
essentially the same concept as the VISA Specification except it
did not have the VISA standard API. However it has a complete
VXI-11.2 and VXI-11.3 capability. Agilent's VISA layer sits on top
of their SICL library and calls the SICL library to interface with
the hardware drivers and to be the VXI-11 client. Unfortunately
Agilent's VISA layer appears to only make VXI-11.3 calls which
limits its usefulness with the 8065.

CONTROLLING ICS's 8065 WITH AGILENT's SICL LIBRARY

THE SOLUTION

The solution is to write programs for the 8065 that make SICL calls
and to bypass Agilent's VISA layer altogether. SICL's VXI-11.2
commands enable all of the 8065's GPIB Controller capabilities and
give the programmer a complete IEEE-488.1 and 488.2 capabil-
ity. At the same time, direct SICL calls speed up the program and
eliminate a useless software layer.

This Application Note covers how to write a SICL program in Visual
Basic and includes a complete example program (SICL_kybd) that
you can use as the starting point for your own program. SICL_kybd
is an interactive keyboard control program that lets you control
GPIB instruments directly from your keyboard. The example is
complete with the source files, comments and a help file.

C and other language programmers can follow the steps outlined in
this Application Note to create their own SICL program.

SICL LIBRARY AVAILABILITY

Agilent has upgraded their VISA/SICL libraries with their latest
release of the Agilent IO Libraries Suite 14.1. The IO Libraries
Suite can be downloaded from Agilent's website and is currently
licensed at no charge to any user of their equipment. (If you don't
have an HP/Agilent instrument in your company, you probably
shouldn't be reading this application note.)

Agilent supplies an excellent guide to SICL programming (SICL
User's Guide) that lists all of SICL's functions and provides easy to
follow instructions for creating a LAN Session and for controlling
GPIB devices through a LAN Interface like the 8065. The on-line
Help file defines all of the SICL functions.

If you have done any amount of GPIB programming, the SICL
library is pretty easy to use. The SICL keyboard example includes
functions for completeness that the average programmer might never
implement and uses just 15 SICL functions. These are the SICL
functions for GPIB Device Sessions, GPIB Interface Sessions and
some SICL LAN Functions.

12-20-05

2

PROGRAM EXAMPLE

ICS has written an interactive SICL keyboard program to show
how to use Agilent's SICL Library. Figure 1 shows the SICL_kybd
program's main form . The program listing is shown in Figure 2 at
the end of this Application Note.

SICL_kybd is a fairly simple program that creates links to the 8065
and to a device so that the 8065 can transfer data to/from the device
and send it other GPIB commands. VB Control buttons are provided
to initiate the functions. They are enabled as the user steps through
the program to give the user a feel for what he/she can do next. Two
timer routines are included as part of the program.

Timer1 runs the IDN and the CMD loops which the user can turn on
or off. The IDN loop continuously queries a device's IDN message
until stopped. The IDN message is placed in the txtResults window.
The CMD Loop executes the command in the comboCmd box. If
the command string contains a '?', the read function is called to query
the device. The response is placed in the txtResults window. A loop
counter is incremented each time Timer1 executes the command.

Timer2 runs the background KeepAlive function. Refer to the Keep
Alive comments on page 3 and in the 8065 Instruction Manual.

The program is not as complicated as it looks like at first glance.
The functions include many VB Control commands that enable/
disable the controls to guide the user through the program. Since
SICL_kybd was adapted from an existing GPIB program it also has
many variables for GPIB commands. Ignore them and just look
for the SICL-GPIB control commands. The complete SICL_kybd
program can be downloaded from ICS's website.

The remainder of this application note describes how the program
was put together.

LAN PROGRAMMING BASICS

VXI-11 compliant products with LAN interfaces like the 8065 need
to be identified and linked to before you can use the 8065 to control
the GPIB bus. The SICL_kybd program has a comboBox where the
user can enter the 8065's IP address. The Create Link button calls
the cmdLink function that closes any open links and then opens an
interface link to the 8065's IP address.

The hardest part of the cmdLink function and the SICL library
programming was formatting the iopen command for an IP address.
The correct interface link format for the 8065 is:

 intfc = iopen(“lan;vxi-11[192.168.0.254]:gpib”)

Note that the command ends with just 'gpib' specified for the inter-
face link to the 8065. The IP address shown above is for the 8065's
default IP address. The program actually inserts the IP address from
the comboBox if the user entered an address in the comboBox.

At this point you can send the 8065 commands to pulse the ICS
line, to set/reset the ATN and REN lines, and to read back some
GPIB bus signals.

INSTRUMENT COMMUNICATION

VXI-11 instrument communication requires that you identify and link
to the instrument that you want to control. The SICL_kybd program
has a Find Instruments button that calls cmdFindInst. cmdFindInst
is a simple 488.2 Find Listener protocol routine that only checks
for devices with primary GPIB addresses. The results are shown
in the comboInst box next to the Find Instrument button. The user
selects the desired instrument address and clicks the Create Link
button to link to the instrument.

The cmdFindInst routine checks all GPIB addresses from 0 to 30
for a low NRFD line from an addressed GPIB device. It skips the
8065's GPIB address and it does not check for secondary addresses.
The user can add secondary addresses to the test to create a true
general purpose Find Listener routine. The routine creates an ad-
dress list, addrlist(I), which can be saved and used in other 488.2
protocols such as FindRQS.

The Create (Instrument) Link button calls the cmdLinki function
which closes any open device link and then opens a link to the speci-
fied device. The SICL_kybd program was designed to control only
one device at a time. However in a real application, the user would
create links to multiple devices at the same time in his program.
The correct device link format is:

 dev = iopen(“lan;vxi-11[192.169.0.254]:gpib,”) + Str$(Device)

The IP address is the same address used for the 8065 link. Note
that the device link command ends with 'gpib,n' to specify a GPIB
device with primary address of n.

At this point all of the device GPIB functions like write/read, Device
Trigger, Device Clear and Serial Poll can be exercised. If the Device
Trigger or Device Clear commands are called with the devices's
handle, dev, the device is addressed to listen and the GPIB SDC or
GET command is sent to the specified device.

SICL Keyboard with IDN message

3
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

TABLE 1 SICL_KYBD COMMANDS
(USED IN SICL_KYBD PROGRAM)

Function Description

iclear Performs a GPIB interface clear (pulses
IFC), which resets the GPIB interfaces or
clears a device.

iclose Closes a SICL session
igpibatnctl Sets or clears the ATN line.
igpibbusstatus Returns requested GPIB bus data.
igpibrenctl Sets or clears the REN line.
igpibsendcmd Sends data with ATN line set.
ilock Locks a session to ensure exclusive use of

a resource.
iopen Opens a SICL session.
iread Reads the data from a specified device or

interface.
ireadstb Reads the status byte from a specified device

(Performs a Serial Poll)
itermchr Definess a termination character condi-

tion.
itimeout Sets GPIB bus timeout.
itrigger Sends a GPIB trigger command (GET) to

a specified device or interface.
iunlock Unlocks a session to free the resource.
iwrite Sends the data to a specified device or

interface.

LIMITED NUMBER OF FUNCTIONS

Table 1 lists the 15 SICL functions used in the SICL_kybd program.
Most GPIB programs use a less than 15 functions to communicate
with and control GPIB instruments. A SICL program adds four
additional functions to open/close links and to lock/unlock links.

Most of SICL_kybd's functions include an 'On Error GoTo Er-
rorHandler' line before calling the SICL function and an Error
handler routine at the end of the function. The SICL library returns
errors as a Visual Basic error. For more details refer to Agilent's
SICL User Guide.

INSTRUMENT LOCKING

Instrument locking is important if you are using the 8065 in a
situation where it can be accessed by multiple client applications.
Without locking you would have no assurance that another client
could not access one of your devices and change its settings and
alter your test results. Locking is not necessary in the engineer-
ing lab but it should be incorporated into the program before it is
released to production.

Locking is best done at the device level. By locking the devices,
you prevent a second user from accessing them until you release
the locks. See the section on locking in the 8065 manual.

The SICL_kybd program has an Auto Lock feature that can be used
to automatically lock an instrument when a command or query is
sent to an instrument and then unlock it after the command or when
8065 has received the response to the query.

CLOSING LINKS AND THE KEEP ALIVE FUNCTION

All LAN links need to be closed when you exit the program. Keep
track of any open links and close all of them in the Exit routine.
See the cmdExit routine.

The 8065 and your client may close the links when they discover that
they have been inactive for a period of time. If your application has
to pause for a period of time, such as over lunch breaks, equipment
setup changes or UUT changes, it is best to implement a background
KeepAlive function that will prevent link closure. The SICL_kybd
program does this in the Timer2 function by momentarily opening
and closing a second link to the device and by checking the GPIB
bus status on the 8065 interface link. This is done on a once a minute
basis when the main portion of the program is idle.

PROGRAM DEBUGGING

ICS provides an ErrorLog Utility program that retrieves error mes-
sages from the 8065 and displays them in a DOS box. The ErrorLog
Utility is useful to run during program development time since it
helps correct command syntax and other errors.

Note that SICL's iopen function has two minor VXI-11 errors that
are displayed by the ErrorLog Utility. They are a REN call to an
instrument and a bad docomand. They cause the 8065 to blink

its ERR LED and record the errors but do not stop the 8065 from
opening the interface link. Agilent has prepared a patch to correct
this problem.

SUMMARY

This Application Note has shown how to overcome the lack of
VXI-11.2 commands in the popular VISA libraries by programming
ICS's 8065 Ethernet-to-GPIB Controller with calls to Agilent's
SICL library. LabView and LabWindows users can install SICL by
installing the Agilent VISA as the secondary VISA. This leaves the
NI VISA in place and yet provides a way to make VXI-11.2 calls
through the SICL library.

This Application Note also described how to write a Visual Basic
program by examining ICS's SICL_kybd program. SICL_kybd is
an interactive instrument control program that was adapted from
ICS's VXI-11kybd program. Because it is general purpose pro-
gram it includes many flags and variables that are not necessary in
a user's test program. It also has extensive error checking to alert
the user to any problem he may encounter. Notes and program-
ming instructions are included to help the programmer avoid time
consuming pitfalls.

SICL turned out to be a very easy library to use. Agilent's documenta-
tion is very clear and easy to follow. The hardest part of converting
a GPIB program to one that uses SICL calls was getting the address
format correct for the iopen function.

4

 If mode& = 1 Then
 txtResults.Text = “ATN Asserted”
 Else
 txtResults.Text = “ATN deasserted”
 End If
 End If
GoTo atnexit:
ErrorHandler:
 txtError.Text = “Check ATN error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
atnexit:
End Sub

Private Sub ckAutoLock_Click()
 If ckAutoLock.value = 1 Then
 If Sendlock = 1 Then ‘test for existing lock
 ckAutoLock.value = 0
 Else
 cmdLock.Enabled = False
 cmdUnlock.Enabled = False
 End If
 Else
 cmdLock.Enabled = True
 cmdUnlock.Enabled = True
 End If
End Sub

Private Sub ckCR_Click()
 On Error GoTo ErrorHandler
 If ckCR.value = 1 Then
 term% = 13 ‘set termination for CR or EOI
 Call itermchr(dev, term%)
 End If
 GoTo ckCRexit:
ErrorHandler:
 txtError.Text = “Termination character error” & NL & Error$ & “

- Retry”
 txtError.Visible = True
 Beep
ckCRexit:
End Sub

Private Sub ckLF_Click()
 On Error GoTo ErrorHandler
 If ckLF.value = 1 Then
 term% = 10 ‘set termination for LF or EOI
 Call itermchr(dev, term%)
 End If
 GoTo ckLFexit:
ErrorHandler:
 txtError.Text = “Termination character error” & NL & Error$ & “

- Retry”
 txtError.Visible = True
 Beep
ckLFexit:
End Sub

Private Sub cmdDT_Click()
 txtError.Visible = False
 combCmd.Text = “”
 txtResults.Text = “”
 If dev = 0 Then
 txtResults.Text = “No devices linked. Select and link to a de-

Figure 1 SICL Keyboard Program Listing

‘**
‘ Visual Basic SICL _kybd Program 12-20-05
‘ Copyright 2005 ICS Electronics div Systems West, Inc.
‘
‘ Program controls VXI-11.2 Interfaces and VXI-1.3 Instruments
‘ 11-30-05 Adapted from VXI-1 Keyboard Program for Agilent SICL

Library
‘ **
‘ Project Changes
‘ 12-05-05 Cleaned up KeepAlive and AutoLock
‘ 12-06-05 Revised help file for SICLkybd
‘ 12-20-05 Cleaned up for AB48-40
‘ **

‘Option Explicit
Dim intfc As Integer ‘interface handle
Dim dev As Integer ‘device handle
Dim CmdStr As String
Dim SPACE80S As String
Dim OutFlag
Public Linknum As Long ‘from create link
Public LinknumI As Long ‘from create linki
Dim server As String ‘from cmdLink
Public NL
Public Sendlock ‘Send locked device flag
Public Msg_Format$
Public cmd$
Public FirstTimeFlg
Public MsgSentFlg ‘set by cmdSend, reset by Timer2
Public Setpointoff
Public Ctlraddr%
Public Device ‘ppss address form
Public pad% ‘from findList
Public sad% ‘from findList
Public eos%
Public Er%
Public vtmo% ‘current Timeout Setting
Public Testnum
Public IDNTestFlg
Public CMDloopFlg
Public LpCount
Public TestHalt ‘stops any test loop
Public founddev% ‘address of the first found device
Public FoundFlg ‘flag indicates a device was found or address set
Public FoundNum ‘number of found devices
Dim Devlist%(64) ‘list of found devices
Const winPictureBox = 2016002
Const winCommandButton = 2007557
Dim Outbuf As String * 6000
Dim Inbuf As String * 10000

Private Sub ckATN_Click()
 txtError.Visible = False
 If intfc <> 0 Then
 If ckATN.value = 1 Then
 mode& = 1
 Else
 mode& = 0
 End If
 On Error GoTo ErrorHandler
 Call igpibatnctl(intfc, mode&) ‘set/clear

ATN

5
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

 If id <> Ctlraddr% Then
 CmdStr$ = Chr$(63) + Chr$(64 + Ctlraddr%) + Chr$(32 +

id)
 Call igpibsendcmd(intfc, CmdStr$, 3)
 Call igpibatnctl(intfc, 0)
 Call igpibbusstatus(intfc, 3, result%) ‘get NDAC status
 If result% <> 0 Then
 addrlist%(i) = id
 i = i + 1
 End If
 CmdStr$ = Chr$(63)
 Call igpibsendcmd(intfc, CmdStr$, 1)
 End If
 Next id
 addrlist%(i) = NOADDR ‘NOADDR = GPIB address of -1

 For i = 0 To 63 ‘put found device addr in combbox
 If addrlist%(i) = NOADDR Then Exit For
 combInst.AddItem addrlist%(i), (i)
 Next i
 If i = 0 Then
 txtResults.Text = “FindInst: No VXI-11 devices found”
 GoTo finddexit:
 ElseIf i = 1 Then
 txtResults.Text = “FindInst: Found “ & Str$(i) & “ VXI-11 de-

vice”
 Else
 txtResults.Text = “FindInst: Found “ & Str$(i) & “ VXI-11 de-

vices”
 End If
 txtResults.Text = txtResults.Text & NL & “Select a device and press

Create Link”
 cmdLinki.Enabled = True
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo finddexit:
ErrorHandler:
 txtError.Text = “Create device link error” & NL & Error$ & “

- Retry”
 txtError.Visible = True
 Beep
finddexit:
End Sub

Private Sub cmdLink_Click() ‘create Server link
 txtError.Visible = False
 txtError.Refresh
 cmdFindInst.Enabled = False
 cmdLinki.Enabled = False
 cmdIFC.Enabled = False
 cmdStatus.Enabled = False
 cmdSend.Enabled = False
 cmdRead.Enabled = False
 cmdIDNtst.Enabled = False
 cmdIDNtstoff.Enabled = False
 cmdCmdtst.Enabled = False
 cmdCmdtstoff.Enabled = False
 cmdIFC.Enabled = False
 cmdStatus.Enabled = False
 cmdLock.Enabled = False
 cmdUnlock.Enabled = False
 cmdSDC.Enabled = False
 cmdDT.Enabled = False
 cmdSpoll.Enabled = False

vice”
 txtError.Visible = True
 Beep
 GoTo DTexit:
 End If
 On Error GoTo ErrorHandler
 Call itrigger(dev)
 txtError.Visible = False
 txtResults.Text = “Device Trigger sent to device “ & Str$(pad%)
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo DTexit:
ErrorHandler:
 txtError.Text = “Device Trigger error” & NL & Error$ & “ - Re-

try”
 txtError.Visible = True
 Beep
DTexit:
End Sub

Private Sub cmdFindInst_Click()
 txtError.Visible = False
 cmdLinki.Enabled = False
 cmdSend.Enabled = False
 cmdRead.Enabled = False
 cmdIDNtst.Enabled = False
 cmdIDNtstoff.Enabled = False
 cmdCmdtst.Enabled = False
 cmdCmdtstoff.Enabled = False
 cmdLock.Enabled = False
 cmdUnlock.Enabled = False
 cmdSDC.Enabled = False
 cmdDT.Enabled = False
 cmdSpoll.Enabled = False
 ckCR.Enabled = False
 ckLF.Enabled = False
 ckCR.value = 0
 ckLF.value = 1
 ckAutoQuery.Enabled = False
 ckAutoLock.Enabled = False
 ckAutoLock.value = 0
 ckByteCnt.Enabled = False
 combInst.Clear
 combCmd.Text = “”
 NOADDR = -1
 If dev <> 0 Then ‘disable any prior device link
 Call iclose(dev)
 lbliLock.Visible = False
 dev = 0
 End If
 Call igpibbusstatus(intfc, 8, result%) ‘get intfc GPIB addr
 Ctlraddr% = result%

 Dim addrlist%(32)
 limit% = 32
 foundaddr& = 0
 txtResults.Text = “FindInst: Wait while looking for VXI-11 de-

vices”
 txtResults.Refresh
 On Error GoTo ErrorHandler ‘install error handler
 i = 0
 For id = 0 To 30 ‘all GPIB primary addr

Figure 1 SICL Keyboard Program Listing Continued

6

 ckCR.Enabled = False
 ckLF.Enabled = False
 ckRen.Enabled = False
 ckATN.Enabled = False
 ckAutoLock.Enabled = False
 ckAutoLock.value = 0
 ckCR.value = 0
 ckLF.value = 1
 ckAutoQuery.Enabled = False
 ckByteCnt.Enabled = False
 combInst.Clear
 combCmd.Text = “”
 If dev <> 0 Then ‘disable any prior device link
 Call iclose(dev)
 lbliLock.Visible = False
 dev = 0
 End If
 If intfc <> 0 Then ‘disable any prior link
 Call iclose(intfc)
 intfc = 0
 End If

 On Error GoTo ErrorHandler ‘install error handler
 ip$ = combSrvrs.Text
 If ip$ = “” Then ip$ = “192.168.0.254”
 CmdStr$ = “lan;vxi-11[“ + ip$ + “]:gpib” ‘lan[128.10.0.3]:gpib

Correct)
 intfc = iopen(CmdStr$) ‘intfc refers to the 8065

 cmdFindInst.Enabled = True
 cmdIFC.Enabled = True
 cmdStatus.Enabled = True
 ckRen.Enabled = True
 ckATN.Enabled = True
 ckRen.value = 1
 ckATN.value = 1
 combSrvrs.Text = ip$
 server = ip$
 txtResults.Text = “Link created to server “ & server
 optTimeout(0).Enabled = True
 optTimeout(1).Enabled = True
 optTimeout(2).Enabled = True
 optTimeout(3).Enabled = True
 optTimeout(1).value = True
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo linkexit:
ErrorHandler:
 txtError.Text = “Create interface link error” & NL & Error$ & “

- Retry”
 txtError.Visible = True
 Beep
linkexit:
End Sub

Private Sub cmdLinki_Click()
 txtError.Visible = False
 cmdSend.Enabled = False
 cmdRead.Enabled = False
 cmdIDNtst.Enabled = False
 cmdIDNtstoff.Enabled = False
 cmdCmdtst.Enabled = False
 cmdCmdtstoff.Enabled = False
 cmdLock.Enabled = False
 cmdUnlock.Enabled = False
 cmdSDC.Enabled = False

 cmdDT.Enabled = False
 cmdSpoll.Enabled = False
 ckCR.Enabled = False
 ckLF.Enabled = False
 ckAutoLock.Enabled = False
 ckAutoLock.value = 0
 ckCR.value = 0
 ckLF.value = 1
 ckAutoQuery.Enabled = False
 ckByteCnt.Enabled = False
 combCmd.Text = “”
 If dev <> 0 Then ‘disable any prior device link
 Call iclose(dev)
 lbliLock.Visible = False
 dev = 0
 End If
 Device = combInst.Text
 If Device >= 0 And Device <= 30 Then
 pad% = Device
 sad% = 0
 ElseIf Device > 100 And Device <= 3030 Then
 L = Len(combInst.Text) ‘get new device primary address
 If L = 3 Then
 pad% = Val(Left$(combInst.Text, 1))
 sad% = Val(Mid$(combInst.Text, 2, 2))
 ElseIf L = 4 Then
 pad% = Val(Left$(combInst.Text, 2))
 sad% = Val(Mid$(combInst.Text, 3, 2))
 Else
 txtError.Text = “Length of address is out of range, reenter”
 txtError.Visible = True
 GoTo Linkiexit: ‘cmdLinki error exit
 End If
 End If
 On Error GoTo ErrorHandler
 ip$ = combSrvrs.Text
 CmdStr$ = “lan;vxi-11[“ + ip$ + “]:gpib,” + Str$(Device)

‘lan[128.10.0.3]:gpib,device Correct)
 dev = iopen(CmdStr$) ‘dev refers to the GPIB device
 txtResults.Text = “Link created to instrument at “ & server & “,” &

Str$(pad%) & “,” & Str$(sad%)
 cmdSend.Enabled = True
 cmdRead.Enabled = True
 cmdIDNtst.Enabled = True
 cmdIDNtstoff.Enabled = False
 cmdCmdtst.Enabled = True
 cmdCmdtstoff.Enabled = False
 cmdLock.Enabled = True
 cmdUnlock.Enabled = True
 cmdSDC.Enabled = True
 cmdDT.Enabled = True
 cmdSpoll.Enabled = True
 ckCR.Enabled = True
 ckLF.Enabled = True
 ckAutoLock.Enabled = True
 ckCR.value = 0
 ckLF.value = 1
 ckAutoQuery.Enabled = True
 ckByteCnt.Enabled = True
 If optTimeout(0).value = True Then Call optTimeout_Click(0)
 If optTimeout(1).value = True Then Call optTimeout_Click(1)
 If optTimeout(2).value = True Then Call optTimeout_Click(2)
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo Linkiexit:

Figure 1 SICL Keyboard Program Listing Continued

7
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

ErrorHandler:
 txtError.Text = “Create device link error” & NL & Error$ & “

- Retry”
 txtError.Visible = True
 Beep
Linkiexit:
End Sub

Private Sub cmdLock_Click()
 On Error GoTo ErrorHandler
 Call ilock(dev)
 txtError.Visible = False
 txtResults.Text = “Device “ & Str$(pad%) & “ locked”
 lbliLock.Visible = True
 lbliLock.Refresh
 Sendlock = 1 ‘sets locked flag
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo lockexit:
ErrorHandler:
 txtError.Text = “Lock error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
lockexit:
End Sub

Private Sub cmdSDC_Click()
 txtError.Visible = False
 combCmd.Text = “”
 txtResults.Text = “”
 If dev = 0 Then
 txtResults.Text = “No devices linked. Select and link to a de-

vice”
 txtError.Visible = True
 Beep
 GoTo SDCexit:
 End If
 On Error GoTo ErrorHandler
 Call iclear(dev)
 txtError.Visible = False
 txtResults.Text = “Device Clear sent to device “ & Str$(pad%)
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo SDCexit:
ErrorHandler:
 txtError.Text = “Check REN error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
SDCexit:
End Sub

Private Sub cmdStatus_Click()
 txtError.Visible = False
 On Error GoTo ErrorHandler
 Call igpibbusstatus(intfc, 1, result%) ‘get REN
 If result% <> 0 Then result% = 1 ‘corrects SICL 256 response to 1
 txtResults.Text = “REN =” & Str$(result%)
 Call igpibbusstatus(intfc, 2, result%) ‘get SRQ
 If result% <> 0 Then result% = 1
 txtResults.Text = txtResults.Text & NL & “SRQ =” &

Str$(result%)
 Call igpibbusstatus(intfc, 3, result%) ‘get NDAC
 If result% <> 0 Then result% = 1
 txtResults.Text = txtResults.Text & NL & “NDAC =” &

Str$(result%)

Figure 1 SICL Keyboard Program Listing Continued

 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo queryexit:
ErrorHandler:
 txtError.Text = “Read Status error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
queryexit:
End Sub

Private Sub cmdUnlock_Click()
 On Error GoTo ErrorHandler
 Call iunlock(dev)
 txtError.Visible = False
 txtResults.Text = “Device “ & Str$(pad%) & “ unlocked”
 lbliLock.Visible = False
 Sendlock = 0 ‘clears locked flag
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo unlockexit:

ErrorHandler:
 txtError.Text = “Unlock error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
unlockexit:
End Sub

Private Sub combInst_Change()
 cmdLinki.Enabled = True
End Sub

Private Sub combSrvrs_Change()
 ‘ cmdLink.Enabled = True
End Sub

 Private Sub Form_DblClick()
 CommonDialog1.HelpFile = “C:\VB6\VXI-11kybd\help\VXI-

11kybd_help.chm”
 CommonDialog1.HelpCommand = cdlHelpContents
 CommonDialog1.ShowHelp
 End Sub

Private Sub Tdelay(delaytime)
 starttime = Timer
 Do Until Timer >= starttime + delaytime
 Loop
End Sub

Private Sub ckRen_Click()
 txtError.Visible = False
 If intfc <> 0 Then
 If ckRen.value = 1 Then
 mode& = 1
 Else
 mode& = 0
 End If
 On Error GoTo ErrorHandler
 Call igpibrenctl(intfc, mode&)
 If mode& = 1 Then
 txtResults.Text = “REN Asserted”
 Else
 txtResults.Text = “REN deasserted”
 End If
 End If

8

 GoTo renexit:

ErrorHandler:
 txtError.Text = “Check REN error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
renexit:
End Sub

Private Sub cmdCmdtst_Click()
 If combCmd.Text = “” Then
 Beep
 txtResults.Text = “No command specified. Enter a command

before starting the Command Loop”
 Else
 CMDloopFlg = 1
 TestHalt = 0
 Timer1.Interval = 250
 cmdCmdtst.Enabled = False
 cmdCmdtstoff.Enabled = True
 End If
End Sub

Private Sub cmdCMDtstoff_Click()
 CMDloopFlg = 0
 cmdCmdtst.Enabled = True
 cmdCmdtstoff.Enabled = False
 If (CMDloopFlg = 0) And (IDNTestFlg = 0) Then
 txtCount.Visible = False
 lblCount.Visible = False
 LpCount = 0
 TestHalt = 0
 Timer1.Interval = 0 ‘turn timer off
 End If

End Sub

Private Sub cmdExit_Click()
 If dev <> 0 Then ‘disable any prior device link
 Call iclose(dev)
 lbliLock.Visible = False
 dev = 0
 End If
 If intfc <> 0 Then ‘disable any prior interface link
 Call iclose(intfc)
 End If
 End
End Sub

Private Sub cmdHelp_Click()
 ‘ HTML Help file launched in response to a button click:
 ‘Private Sub HH_DISPLAY_Click()
 ‘hWnd is a Long defined elsewhere to be the window handle
 ‘that will be the parent to the help window.
 Dim hwndHelp As Long
 ‘The return value is the window handle of the created help

window.
 hwndHelp = HtmlHelp(hWnd, “SICLkybd_help.chm”, HH_DIS-

PLAY_TOPIC, 0)
 ‘ cdbHelp.HelpFile = “\help\SICLkybd_help.chm”
 ‘ cdbHelp.ShowHelp
End Sub

Private Sub cmdIDNtst_Click()
 combCmd.Text = “*idn?”
 Timer1.Interval = 250
 IDNTestFlg = 1
 TestHalt = 0
 cmdIDNtst.Enabled = False
 cmdIDNtstoff.Enabled = True
End Sub

Private Sub cmdIDNtstoff_Click()
 IDNTestFlg = 0
 cmdIDNtst.Enabled = True
 cmdIDNtstoff.Enabled = False
 If (CMDloopFlg = 0) And (IDNTestFlg = 0) Then
 txtCount.Visible = False
 lblCount.Visible = False
 LpCount = 0
 TestHalt = 0
 Timer1.Interval = 0
 End If
End Sub

Private Sub cmdIFC_Click()
 txtError.Visible = False
 combCmd.Text = “”
 On Error GoTo ErrorHandler
 Call iclear(intfc) ‘pulse IFC
 ckRen.value = 1
 ckATN.value = 0
 IDNTestFlg = 0
 cmdIDNtst.Enabled = True
 cmdIDNtstoff.Enabled = False
 CMDloopFlg = 0
 cmdCmdtst.Enabled = True
 cmdCmdtstoff.Enabled = False
 txtCount.Visible = False
 lblCount.Visible = False
 txtResults.Text = “IFC Sent”
 GoTo IFCexit:
ErrorHandler:
 txtError.Text = “Send IFC error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
IFCexit:
End Sub

Private Sub cmdIOloop_Click()
 IOloopFlg = 1
End Sub

Private Sub cmdIOloopoff_Click()
 IOloopFlg = 0
 If (IOloopFlg = 0) And (IDNTestFlg = 0) Then
 txtCount.Visible = False
 lblCount.Visible = False
 LpCount = 0
 End If
End Sub

Private Sub cmdRead_Click()
 txtError.Visible = False
 If dev = 0 Then
 txtResults.Text = “No devices linked. Select a device and create

link”

Figure 1 SICL Keyboard Program Listing Continued

9
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

 If Outstring$ = “” Then
 txtResults.Text = “Device command box empty, nothing sent to

the device”
 Beep
 GoTo Sendexit:
 End If

 If ckCR = 1 Then Outstring$ = Outstring$ & Chr$(13)
 If ckLF = 1 Then Outstring$ = Outstring$ & Chr$(10)
 bufsize& = Len(Outstring$)
 endi% = 1 ‘assert EOI
 On Error GoTo ErrorHandler
 Call iwrite(dev, Outstring$, bufsize&, endi%, outcount&)
 txtError.Visible = False
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 If (ckAutoQuery.value = 1) And (InStr(Outstring$, “?”) <> 0)

Then
 Call cmdRead_Click
 Else
 txtResults.Text = “Send String => “ + Outstring$
 If ckAutoLock.value = 1 Then Call cmdUnlock_Click
 Sendlock = 0 ‘reset flag
 End If
 GoTo Sendexit:
ErrorHandler:
 txtError.Text = “Send error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
Sendexit:
End Sub

Private Sub cmdSPoll_Click()
 txtError.Visible = False
 Outstring$ = combCmd.Text
 txtResults.Text = “”
 If dev = 0 Then
 txtResults.Text = “No devices linked. Select and link to a de-

vice”
 txtError.Visible = True
 Beep
 GoTo Spollexit:
 End If
 On Error GoTo ErrorHandler
 Call ireadstb(dev, rdg%)
 txtError.Visible = False
 txtResults.Text = “Serial poll response => “ + Str$(rdg%)
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 GoTo Spollexit:
ErrorHandler:
 txtError.Text = “Read Status Byte error” & NL & Error$ & “ -

Retry”
 txtError.Visible = True
 Beep
Spollexit:
End Sub

Private Sub Form_Load()
 Rev$ = “Revised 12-20-2005”
 cmdLink.Enabled = True
 cmdLinki.Enabled = False
 cmdFindInst.Enabled = False
 cmdSend.Enabled = False
 cmdRead.Enabled = False

Figure 1 SICL Keyboard Program Listing Continued

 txtError.Visible = True
 Beep
 GoTo Readexit:
 End If
 If ckAutoLock.value = 1 And Sendlock = 0 Then Call cmdLock_

Click
 Sendlock = 0 ‘reset Sendlock flag
 term% = 0
 Flags& = 0
 Instring$ = SPACE80S ‘100 spaces
 InCount& = Len(Instring$)
 bufsize& = Len(Instring$)
 If (CMDloopFlg = 0) And (IDNTestFlg = 0) Then
 txtResults.Text = “Device Read: Waiting for device response”
 txtResults.Refresh
 End If
 On Error GoTo ErrorHandler
 Call iread(dev, Instring$, bufsize&, term%, InCount&)
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 If ckAutoLock.value = 1 Then
 Call cmdUnlock_Click
 If Er% <> 0 Then
 Beep
 GoTo Readexit:
 End If
 End If
 If ckDispAll.value = 0 Then
 L = InStr(Instring$, Chr$(13)) ‘check for CR
 If L <> 0 Then
 Instring$ = Left$(Instring$, L - 1)
 Else
 L = InStr(Instring$, Chr$(10)) ‘check for LF
 If L <> 0 Then
 Instring$ = Left$(Instring$, L - 1)
 End If
 End If
 End If
 txtError.Visible = False
 txtResults.Text = RTrim$(Instring$)
 If ckByteCnt.value = 1 Then
 txtResults.Text = txtResults.Text + NL + “Byte count= “ +

Str$(InCount&)
 End If
 GoTo Readexit:
ErrorHandler:
 txtError.Text = “Send IFC error” & NL & Error$ & “ - Retry”
 txtError.Visible = True
 Beep
Readexit:
End Sub

Private Sub cmdSend_Click() ‘send command string
 txtError.Visible = False
 If dev = 0 Then
 txtResults.Text = “No devices found. Select and link a device”
 txtError.Visible = True
 Beep
 GoTo Sendexit:
 End If

 If ckAutoLock.value = 1 Then Call cmdLock_Click
 Sendlock = 1 ‘set Sendlock flag for read routine
 Outstring$ = combCmd.Text

10

 cmdIDNtst.Enabled = False
 cmdIDNtstoff.Enabled = False
 cmdCmdtst.Enabled = False
 cmdCmdtstoff.Enabled = False
 cmdIFC.Enabled = False
 cmdStatus.Enabled = False
 cmdDT.Enabled = False
 cmdSDC.Enabled = False
 cmdSpoll.Enabled = False
 cmdLock.Enabled = False
 cmdUnlock.Enabled = False
 cmdExit.Enabled = True
 ckAutoLock.Enabled = False
 ckATN.Enabled = False
 ckRen.Enabled = False
 ckCR.Enabled = False
 ckLF.Enabled = False
 ckAutoQuery.value = 1
 ckByteCnt.value = 0
 lbliLock.Visible = False
 lblKeepAliveMsg.Visible = False
 optTimeout(0).Enabled = False
 optTimeout(1).Enabled = False
 optTimeout(2).Enabled = False
 optTimeout(3).Enabled = False
 SPACE80S = Space$(100) ‘100 spaces
 NL = Chr(13) + Chr(10)
 txtRev.Text = Rev$
 txtError.Text = “” ‘clear label and text box
 txtResults.Text = “”
 combCmd.Text = “”
 TypeVar = “GPIB” ‘default to GPIB control
 OutFlag = 0
 FoundFlg = 0
 BD% = 0 ‘define initial values
 dev = 0
 intfc = 0
 bddev% = 0
 addr% = 4
 Device = 4
 eos% = 10
 Testnum = 100
 IDNTestFlg = 0
 CMDloopFlg = 0
 IOloopFlg = 0
 txtCount.Visible = False
 LpCount = 0
 Timer1.Interval = 0
 txtResults.Enabled = True
 txtError.Enabled = False
 ErrFlag = 0
 IDNTestFlg = 0
 IOloopFlg = 0
 combCmd.AddItem “*esr?”, 0
 combCmd.AddItem “*idn?”, 1
 combCmd.AddItem “*stb?”, 2
 FirstTimeFlg = 0
 App.HelpFile = App.Path & “\GPIBkybd2.chm”
End Sub

Private Sub optTimeout_Click(Index As Integer)
 Select Case Index
 Case 0
 Call itimeout(intfc, 1000) ‘time in milliseconds
 If dev <> 0 Then Call itimeout(dev, 1000)

 Case 1
 Call itimeout(intfc, 3000) ‘time in milliseconds
 If dev <> 0 Then Call itimeout(dev, 3000)
 Case 2
 Call itimeout(intfc, 10000) ‘time in milliseconds
 If dev <> 0 Then Call itimeout(dev, 10000)
 Case 3
 Call itimeout(intfc, 0) ‘no timeout
 If dev <> 0 Then Call itimeout(dev, 0)
 End Select
End Sub

Private Sub Timer1_Timer()
 If (CMDloopFlg = 0) And (IDNTestFlg = 0) Then
 ‘txtCount.Visible = False
 ‘LpCount = 0
 GoTo Timerexit:
 End If

 If TestHalt = 1 Then GoTo Timerexit:

 If IDNTestFlg = 1 Then
 If ckAutoLock.value = 1 Then
 Call cmdLock_Click
 If Er% <> 0 Then
 Beep
 IDNTestFlg = 0
 GoTo Timerexit:
 End If
 Sendlock = 1 ‘set Sendlock flag for read routine
 End If
 Outstring$ = “*IDN?”
 If ckCR = 1 Then Outstring$ = Outstring$ + Chr$(13)
 If ckLF = 1 Then Outstring$ = Outstring$ + Chr$(10)
 bufsize& = Len(Outstring$)
 endi% = 1 ‘assert EOI
 On Error GoTo ErrorHandler
 txtError.Text = “Write error” & NL & Error$ & “ - Retry”
 Call iwrite(dev, Outstring$, bufsize&, endi%, outcount&)
 txtError.Visible = False
 MsgSentFlg = 1 ‘sets flag to show that the link was exercized
 If (ckAutoQuery.value = 1) And (InStr(Outstring$, “?”) <> 0)

Then
 txtError.Text = “Read error” & NL & Error$ & “ - Retry”
 Call cmdRead_Click
 End If
 End If

 If CMDloopFlg = 1 Then ‘loop use the string in the combCmd.
 If combCmd.Text = “” Then
 Beep
 txtError.Text = “Command box empty”
 txtError.Visible = True
 Else
 If ckAutoLock.value = 1 Then
 Call cmdLock_Click
 If Er% <> 0 Then
 Beep
 CMDloopFlg = 0
 GoTo Timerexit:
 End If
 Sendlock = 1 ‘set Sendlock flag for read routine
 End If
 txtError.Visible = False
 Outstring$ = combCmd.Text

Figure 1 SICL Keyboard Program Listing Continued

11
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

 If ckCR = 1 Then Outstring$ = Outstring$ + Chr$(13)
 If ckLF = 1 Then Outstring$ = Outstring$ + Chr$(10)
 bufsize& = Len(Outstring$)
 endi% = 1 ‘assert EOI
 On Error GoTo ErrorHandler
 txtError.Text = “Write error” & NL & Error$ & “ - Retry”
 Call iwrite(dev, Outstring$, bufsize&, endi%, outcount&)
 MsgSentFlg = 1 ‘sets flag to show that the link was

exercized
 If (ckAutoQuery.value = 1) And (InStr(Outstring$, “?”) <>

0) Then
 txtError.Text = “Read error” & NL & Error$ & “ - Retry”
 Call cmdRead_Click
 End If
 End If
 End If

Timerexit1: txtCount.Visible = True
 lblCount.Visible = True
 LpCount = LpCount + 1
 txtCount.Text = LpCount
 GoTo Timerexit:
ErrorHandler:
 txtError.Visible = True
 Beep
 If ckAutoLock.value = 1 Then Call cmdUnlock_Click
 Sendlock = 0 ‘reset flag
 IDNTestFlg = 0
 CMDloopFlg = 0
Timerexit:
End Sub

Private Sub txtAddr_Change()
 cmdSet.Enabled = True
End Sub

Private Sub combCmd_KeyPress(KeyAscii As Integer)
 If KeyAscii = (13) Then
 Call cmdSend_Click
 End If
End Sub

Figure 1 SICL Keyboard Program Listing Continued

LabView and labWindows are trademanrks of National Instruments, Austin, Texas
SICL is a trademark of Agilent Corporation, Palo Alto, California

Private Sub Timer2_Timer() ‘runs 1 minute link keep-alive func-
tions

 If MsgSentFlg = 0 And intfc <> 0 Then ‘0 needs a keep alive
exercize

 lblKeepAliveMsg.Visible = True
 lblKeepAliveMsg.Refresh
 If dev <> 0 Then
 CmdStr$ = “lan;vxi-11[192.168.0.254]:gpib,” + Str$(Device)

‘lan[128.10.0.3]:gpib Correct)
 dev2 = iopen(CmdStr$)
 Call iclose(dev2)
 ‘txtResults.Text = “Keep Alive Timer exercized the link”
 End If
 Call igpibbusstatus(intfc, 1, result%) ‘get REN
 Call Tdelay(0.1)
 lblKeepAliveMsg.Visible = False
 End If
 MsgSentFlg = 0 ‘clears flag - link exercized
End Sub

