BOARD LEVEL PRODUCTS

DESCRIPTION

ICS's 9009 is a multi-interface board with Ethernet, GPIB and USB ports for controlling Modbus RTU slave devices. The 9009 lets the user send simple read-write messages on any interface to control and query Modbus RTU slave devices. The 9009 does all of the Modbus packet formatting and verifies the response packets. The 9009 has both RS-232 and RS-485 interfaces so it can be connected directly to a single Modbus slave device or it can be connected to multiple Modbus devices on a RS-485 network. The 9009's Ethernet interface also functions as a Modbus TCP/IP to Modbus RTU converter. Protocol conversion is automatic and does not require any effort on the user's part.

The 9009 is a small 5.5 x 5.5 inch board that is designed to be mounted on the rear panel of a host chassis or chamber so the Ethernet, GPIB and USB connectors protrude through the rear panel. Serial connections are made internally on a DE-9 male connector. The 9009 board can also be mounted on a panel or baseplate. The 9009 is powered by +5 to +15 volts so, in most cases, it can be connected an existing power supply.

Applications include connecting temperature chambers or other equipment to test systems, allowing remote control of Modbus RTU slave devices or doing Modbus TCP/IP to Modbus RTU conversion.

Ethernet Interface

The 9009's Ethernet Interface supports the VXI-11 and Modbus TCP/IP protocols as well as raw socket (telnet). As a VXI-11.3 interface, it adapts Modbus RTU devices like temperature chambers to Ethernet based test systems that incorporate LXI or VXI-11 instruments. As a Modbus TCP/IP converter, the 9009 lets Process

9009 Multi-Interface Board

Controllers like PLCs communicate with Modbus RTU slave devices. The raw socket capability makes it easy to write your own communication program. All network settings can be set with a web browser.

GPIB Interface

The 9009's GPIB Interface is an IEEE-488.2 compatible interface that adapts Modbus RTU devices to the GPIB bus. The 9009 responds to all of the IEEE-488.2 Common Commands and utilizes a set of simple commands to control Modbus RTU devices. The GPIB address is set internally and can be changed with a SCPI command or with a web browser.

USB Interface

The 9009's USB Interface is a USB 2.0 compatible interface that allows Modbus RTU devices to be controlled from the USB bus. The 9009 uses the Microsoft Virtual COM Driver to send command strings to the 9009 so your driver never becomes obsolete.

- 9009 Multi-function modbus rtu interface board
- Communicate to Modbus RTU devices with Ethernet, GPIB or USB.
 User has choice of three Interfaces.
- Ethernet port supports VXI-11, Raw Socket and Modbus TCP/IP. Supports test and process control applications.
- Simple Command Set controls all popular Modbus RTU slave devices. Supports 10 Modbus functions.
- Modbus serial port provides RS-232 and balanced RS-422/RS-485 signals. Controls one or multiple Modbus devices.
- Internal webserver includes a general Control page.
 Easy control of the 9009 or the Modbus device from any browser, pad or smart phone.
- Includes sample html control pages for Watlow F4, F4T and EZ Zone Controllers. *Easily customized for OEM applications*.
- Runs on +5 to 15 volt power. Uses existing power supplies in most cases.

7034 Commerce Circle Pleasanton, CA 94588 Phone: **925.416.1000** Fax: **925.416.0105** Web: **www.icselect.com**

9009: DESCRIPTION

VXI-11 Operation

VXI-11 is a Ethernet instrument control protocol developed by the VISA committee when they established the VXI and VISA standards. VXI-11 provides GPIB like control of Ethernet instruments using RPC on TCP/IP. VXI-11 is a packet protocol designed to give the user error free communication with the instrument. Every VXI-11 command receives a response packet with command status information and the appropriate response data.

The 9009 has an expanded IEEE-488.2 Status Reporting Structure that includes a register for reporting Modbus communication faults. The 9009's Status Reporting Structure can be used to generate Service Requests using a Reverse Interrupt channel when an error occurs Alternately, the user can periodically query the Modbus Error and other register to check for command and communication errors.

Raw Socket Operation

The 9009 accepts telnet compatible, raw socket communication so that a non-VXI-11 user can send simple read-write messages over the network to control and query one or more Modbus RTU slave devices. This makes it easy to communicate with the 9009 without a VISA library. Reverse channel notification of an error is not possible with the raw socket protocol..

Remote Procedure Calls (RPC)

RPC (or Remote Procedure Calls) provides an invisible communication medium that allows the developer to concentrate on his program. RPC calls are commonly used on LINUX, UNIX, MAC OS X and all UNIX like operating systems with C language programs. However, they can be used on any operating system that includes a protocol converter utility (rpcgen). The rpcgen utility converts the RPC language description of the VXI-11 protocol in the VXI-11 Specification to generate the command libraries for writing programs with RPC calls. Because the rpcgen utility tailors the libraries to the specific machine, you never have to worry about driver problems or getting an updated driver. RPC calls can also be used to configure the 9009.

The VXI-11 Specification is available at http://www.vxibus.org or from ICS's website. For more information about RPC programming, refer to ICS's Application Notes AB80-3 and AB80-11.

Modbus TCP/IP Conversion

As a Modbus TCP/IP Converter, the 9009 lets PCLs and other devices that use the Modbus TCP/IP protocol control one or more Modbus RTU slave devices. The 9009's Modbus TCP/IP to Modbus RTU protocol conversion is a transparent process that does not require any user setup or action. The 9009 will recognize the Modbus TCP/IP packet and convert its Protocol Data Unit (PDU) into Modbus RTU Application Data Unit (ADU). Response data from the slave device is returned to the sender as a TCP/IP response packet. The TCP/IP side is the controller side and the Modbus RTU devices are Modbus slave devices. The 9009 is completely transparent and does not restrict Modbus addresses, data or function codes.

JAVA Coding

The 9009 can be programmed with JAVA and the resulting program run on any computer with JAVA capability. JAVA programming examples and library are available at SourceForge on the Internet.

Internal Webserver

The 9009 is easily controlled and configured with any web browser from a PC, iPAD or Smart Phone. When you first access the 9009, you see the Welcome Page shown below. From the Welcome Page you can access the Configuration Page, the 9009 Control Page, and the sample F4, F4T or EZ-Zone control pages. The Welcome page includes the LXI required 'blink' function.

Configuration Page

The Configuration Page lets you view or change the 9009's network, GPIB, USB and Modbus serial parameters. Any configuration changes can be saved in the 9009's flash memory and take affect when the unit is rebooted. Some of the Configuration Page settings can be read or changed with SCPI commands. A rear panel LAN Reset button restores the network settings to their factory values in case the 9009 ever gets 'lost' or was given an incorrect IP entry.

Browser Control of Modbus Devices

The 9009 includes four HTML pages that let a user control Modbus Slave Devices from any web browser or from a mobile device that can access the 9009. Three of the HTML pages are sample temperature controller pages for Watlow controllers that can be customized by an OEM for his specific product. They let a user view and control Temperature Chambers and other heating/ cooling devices that use Watlow F4, F4T or EZ-Zone Controllers. These pages provide the end user with an alternate way to monitor the temperature cycle when running a test.

	Model 9099 Welcome Page			
Current Setup	This screen displays the unit's current settings. Use the Configuration Page to change the Network Settings, and User Description			
Instrument Model 9099 MAC Address 40-D8-55-17-05 IP Address 192.168.0.254 User Description Status	Serial Number 905099 Revision Rev x0.04 Ver 15.09.29 -42			
To blink the RDY LED select an a	ction and press Activate Blink No Blink Activate Go to Configuration Page F4 PAGE F4T PAGE Go to Control Page EZ ZONE PAGE			
Last update 09-21-2015				

9009 Welcome Page

9009: APPLICATION

An engineer can have an automated test running in the lab and use a browser on his PC or MAC to access the 9009 over the company network. By bringing up the appropriate controller page, he can view the chamber's temperature, humidity and the digital values. He can do the same with the browser on his smart phone or tablet as long as he has access to the company network. The 9009 prevents conflicts between multiple clients or users by automatically locking access to the serial IO during command operations. Locking is on an atomic operation basis which means that the 9009 completes a read or write operation from one application before granting access to another user.

The 9009 webserver also includes a general purpose Control Page that lets a user enter and execute commands from his web browser. The commands go to the 9009's internal parser and can control and configure the 9009 or command and query any connected Modbus RTU Slave Device. Command response and status is updated after every command. The Control Page is a another way a user can debug Ethernet connectivity and Modbus device connections.

OEM Customization

The 9009 provides the OEM with a wide range of customizing options to integrate the 9009 into the user's system. The OEM can:

- Set the 9009's IDN message to identify the 9009 as his product.
- Modify the HTML webpages by adding his logo, by changing page color, text and page layout. Additional pages can be created for different products and unwanted pages deleted. See ICS Application Bulletin AB80-5 for modification instructions.
- Add additional html variables or functions for controlling other Modbus devices and/or other parameters. This requires custom programming by ICS.
- Use the 9009 to create a LXI certified instrument. Contact ICS for guidance before doing LXI design work.

	Model 9009 Configuration Page
Instructions	This screen contains the unit's configurable interface parameters. Enter any new settings and press the Update Flash button to save the new settings.
TCP/IP Mode:	Static DHCP with AutoIP fallback
IP Address:	192.168.0.254
Net Mask:	255.255.255.0
Gateway Address:	192.168.0.1
Comm Timeout:	120 in seconds
IP KeepAlive:	On [©] Off ^C
Auto Disconnect Sockets:	On C Off C what's this?
User Description:	
Raw Socket Enable:	On C Off
Raw Socket Port#:	23
Raw Socket Echo Enable:	On C Off €
GPIB Address:	4
USB Prompt Enable:	On © Off C
USB Echo Enable:	On C Off @
Modbus Serial Baud Rate:	9600
Modbus Serial Data Bits:	8
Modbus Serial Stop Bits:	1
Modbus Serial Parity:	None
Modbus Serial RS485 Mode:	On C Off
Slave Device Address:	1
Substitute Slave Address Enable:	On C Off ®
Update Flash	Clear Return to the Welcome Page
Last update 09-01-2015	

Sample Watlow F4T Temperature Controller Page

9009 Rear Panel Cutouts

Mounting Methods

The 9009 has been designed to mount easily against the rear panel of the host chassis. The illustration above shows the rear panel connector cutouts, mounting holes and reset button access hole. Rear panel mounting blocks hold the 9009 board flush against the rear panel so the connectors can protrude through the rear panel and make a good EMI/RFI seal. Alternately, the 9009 can be mounted on any panel using the four mounting holes. Only one simple cable is required to connect the 9009 to the Modbus slave device.

LAN Reset Button

The LAN Reset button restores the network settings to their factory values in case the 9099 ever gets 'lost' or was given an incorrect IP entry.

DC Power

DC power is applied to the 9009 on a two screw terminal strip. The 9009 has an on-board linear regulator that can handle up to 15 Vdc. The user can by-pass the regulator when regulated 5 Vdc is available or use the regulator when 5.5 to 15 volt power is available.

9009 Outline Dimensions

9009: SPECIFICATIONS

Ethernet Interface

Ethernet Interface

Туре	IEEE 802.3 compliant
	Auto MDIX
Speeds	10BaseT (10 Mb/s)
	100BaseT (100 Mb/s)
Connector	RJ45
IP Address	Static or DHCP with fall-
	back to an AutoIP
Factory setting	192.168.0.254 Static IP
Interface name	any [inst0]
Buffers	1 kbytes

VXI-11 Capabilities:

Fully VXI-11.3 co	mpliant
VXI-11.3	Device Interface
Sockets	15 + 1 for UDP
Channel types	Data, Abort and Interrupt
Links	64
Interface Name	inst0 for general use

RPC Protocol

Conforms to ONC RPC Version 2, VXI-11

Modbus TCP/IP Conformance:

Transparent TCP/IP to Modbus RTU conversion verified with Modbus.ORG TCP/IP Test. Command functions limited to slave device capabilities.

Sockets10Channel typesDataLinks64

Raw Socket Conformance:

Access to 9009 parser for Setup and Modbus device control. Sockets 1 Channel types Data Links 1

WebServer Capabilities

Provides the following HTML 4.01 compatible web pages: Welcome Configuration Confirmation Reboot 404, 500 and 501 Error pages Watlow F4, F4T and EZ-Zone Controller pages

IEEE 488.2 Capabilities:

Same as GPIB Interface except SRQ is not generated.

SCPI Capabilities:

Same as GPIB Interface.

LXI Conformance:

The 9009's firmware meets some of the LXI 1.4 Specification requirements for core instruments. The 9009's VXI-11.3 and IEEE-488.2 compliance exceeds the LXI requirements.

Sample EZ-Zone html Page

	ture-Humidity Chamber Page
This screen dis Enter a new se Press Update t	plays the Temperature-Humidity Chamber values and setpoints. tpoint or click to set a new Digital Output. o send the new values to the Chamber.
Temperature	Humidity Aux Temp
Reading 77 ்℃⊙°F	Reading 0 Reading 0
Setpoint 120	Setpoint 89
Di	igital Outputs
Output 1 ⊂ on © Off	Output 5 O on © Off
Output 2 Oon Off	Output 6 O on Off
Output 3 O on Off	Output 7 O on O off
Output 4 C On Off	Output 8 O On Off
Refresh	Update

Sample F4 Temperature Page

USB Interface

Provides USB control through a virtual COM Port using the Microsoft's standard driver for Virtual COM Ports.

Supported Operating Systems Windows XP (SP2) or later, Vista and Windows 7 Windows 8 Windows 10

Data Rates and FormatsBaud Rate:115.2 KbaudDate bits8ParitynoneStop bits1

9009: SPECIFICATIONS

GPIB Bus Interface

The 9009's 488 Bus Interface meets IEEE STD 488.2-1987 and has the following capabilities:

SH1, AH1, T6, L4, SR1, PP0, DC1

RL0, DT0, C0 and E1/E2 drivers

Bus drivers incorporate power up/down protection to prevent glitching the bus during power turn-on. Standard IEEE-488 connector with metric mounting studs.

Address Capability

Primary addresses 0-30.

Buffers

GPIB Input1 kbytesGPIB Input1 kbytes

Status Reporting Structure

IEEE-488.2 and SCPI Status Byte, ESR, Questionable and Operational Registers.

SRQ Generation

SRQs are generated per the IEEE-488.2 specification if the unit is not addressed to talk, if SRQs are enabled and if an enabled register bit occurs.

488.2 Common Commands

*CLS, *ESE, *ESE?, *ESR?, *IDN?, *OPC, *OPC?, *PSC, *RST, *SAV, *SRE, *SRE?, *STB, *TST?, AND *WAI.

SCPI Commands

The 9009 conforms to the SCPI 1994.0 Specification and uses SCPI commands to set: GPIB Bus Address External GPIB Address Enable Baud rate select Data bits Stop bits Parity Talk Format

Modbus Serial Interface

DE-9P male connector with a full-duplex serial interface with single ended RS-232 and differential RS-422 (RS-485) signals. Signal selection made by jumpers on the 9009. Internal termination network provided for RS-422 and RS-485 signals.

TxD,RxD,RTS,CTS,
DSR and DTR
Tx and Rx pairs
300,600,1.2K,2.4K,4.8K, 9.6K, 19.2K and 38.4K
baud
/ or 8 bits
Odd, even or none
1 or 2
256 bytes

Modbus Commands

Modbus commands accept ASCII decimal values or HEX values starting with #h. Code is the Modbus RTU command code produced by the 9009. Integer and register values from 0 to 65,535. Floating Point per IEEE-754.

C n - Sets Device Address RC? reg, n 0x01 Reads coils <i>n</i> from register <i>reg</i> RI? reg, n 0x02 Reads Discrete Inputs <i>n</i> from register <i>reg</i> R? reg, n 0x03 Reads <i>n</i> words starting with register <i>reg</i> RF? reg 0x03 Reads floating point value from register <i>reg</i> and <i>reg+1</i> RR? reg, n 0x04 Reads <i>n</i> words starting with register <i>reg</i> RE? 0x07 Reads Exception value WC reg, b 0x05 Writes boolean <i>b</i> to coil W reg, w 0x06 Writes word <i>w</i> to a single register <i>reg</i> WB reg, n, ww 0x10 Writes multiple words <i>n</i> to a single register <i>reg</i> WF reg, n 0x10 Writes a floating point value <i>n</i> to register <i>reg</i> MF reg, n 0x08 Performs loopback test D time E? 0x08 Device Address	Cmd	Code	Function
RC? reg, n $0x01$ Reads coils n from register reg RI? reg, n $0x02$ Reads Discrete Inputs n from register reg R? reg, n $0x03$ Reads n words starting with register reg RF? reg $0x03$ Reads floating point value from register reg RR? reg, n $0x04$ Reads n words starting with register reg RR? reg, n $0x04$ Reads n words starting with register reg RR? reg, n $0x04$ Reads n words starting with register reg RE? $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register reg WB reg, n, ww $0x10$ Writes multiple words n to a single register reg WF reg, n $0x10$ Writes a floating point value n to register reg WF reg, n $0x08$ Performs loopback testD timeSets serial timeout in ms E?Queries Modbus Error	Cn -		Sets Device Address
register reg RI? reg, n 0x02 Reads Discrete Inputs n from register reg R? reg, n 0x03 Reads n words starting with register reg RF? reg 0x03 Reads floating point value from register reg and reg+1 RR? reg,n 0x04 Reads n words starting with register reg RE? 0x07 Reads Exception value WC reg,b 0x05 Writes boolean b to coil W reg, w 0x06 Writes word w to a single register reg WB reg, n, ww 0x10 Writes multiple words n to a single register reg WF reg, n 0x10 Writes a floating point value n to register reg and reg+1 L w 0x08 Performs loopback test D time E? Queries Modbus Error	RC? reg, r	n 0x01	Reads coils <i>n</i> from
RI? reg, n $0x02$ Reads Discrete Inputs n from register reg R? reg, n $0x03$ Reads n words starting with register reg RF? reg $0x03$ Reads floating point value from register reg and $reg+1$ RR? reg, n $0x04$ Reads n words starting with register reg RE? $0x07$ Reads Exception valueWC reg, b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register reg WB reg, n, ww $0x10$ Writes multiple words n to a single register reg WF reg, n $0x10$ Writes a floating point value n to register reg WF reg, n $0x10$ Writes a floating point value n to register reg D timeSets serial timeout in ms E?Queries Modbus Error			register reg
from register reg R? reg, n 0x03 Reads n words starting with register reg RF? reg 0x03 Reads floating point value from register reg and $reg+1$ RR? reg,n 0x04 Reads n words starting with register reg RE? 0x07 Reads Exception value WC reg,b 0x05 Writes boolean b to coil W reg, w 0x06 Writes word w to a single register reg WB reg, n, ww 0x10 Writes multiple words n to a single register reg WF reg, n 0x10 Writes a floating point value n to register reg and $reg+1$ L w 0x08 Performs loopback test D time Sets serial timeout in ms E? Queries Modbus Error	RI? reg, n	0x02	Reads Discrete Inputs n
R? reg, n $0x03$ Reads n words starting with register reg RF? reg $0x03$ Reads floating point value from register reg and $reg+1$ RR? reg, n $0x04$ Reads n words starting with register reg RE? $0x07$ Reads Exception valueWC reg, b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register reg WB reg, n, ww $0x10$ Writes multiple words n to a single register reg WF reg, n $0x10$ Writes a floating point value n to register reg WF reg, n $0x10$ Writes a floating point value n to register reg and $reg+1$ L w $0x08$ Performs loopback test D timeE?Queries Modbus Error			from register <i>reg</i>
with register regRF? reg0x03Reads floating point value from register reg and reg+1RR? reg,n0x04Reads n words starting with register regRE?0x07Reads Exception valueWC reg,b0x05Writes boolean b to coilW reg, w0x06Writes word w to a single register regWB reg, n, ww 0x100x10Writes multiple words n to a single register regWF reg, n0x10Writes a floating point value n to register reg and reg+1L w0x08Performs loopback test Sets serial timeout in ms Queries Modbus Error	R? reg, n	0x03	Reads <i>n</i> words starting
RF? reg $0x03$ Reads floating point value from register reg and reg+1RR? reg,n $0x04$ Reads n words starting with register regRE? $0x07$ Reads Exception valueWC reg,b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register regWB reg, n, ww $0x10$ Writes multiple words n to a single register regWF reg, n $0x10$ Writes a floating point value n to register regWF reg, n $0x08$ Performs loopback test Sets serial timeout in ms E?			with register <i>reg</i>
value from register reg and $reg+l$ RR? reg,n0x04Reads n words starting with register reg RE?0x07Reads Exception valueWC reg,b0x05Writes boolean b to coilW reg, w0x06Writes word w to a single register reg WB reg, n, ww 0x100x10Writes multiple words n to a single register reg WF reg, n0x10Writes a floating point value n to register reg WF reg, n0x10Writes a floating point value n to register reg and $reg+1$ L w0x08Performs loopback test Sets serial timeout in ms E?	RF? reg	0x03	Reads floating point
and $reg+1$ RR? reg,n0x04Reads n words starting with register reg RE?0x07Reads Exception valueWC reg,b0x05Writes boolean b to coilW reg, w0x06Writes word w to a single register reg WB reg, n, ww 0x100x10Writes multiple words n 			value from register reg
RR? reg,n $0x04$ Reads n words starting with register reg RE? $0x07$ Reads Exception valueWC reg,b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register reg WB reg, n, ww $0x10$ Writes multiple words n to a single register reg WF reg, n $0x10$ Writes a floating point value n to register reg WF reg, n $0x10$ Writes a floating point value n to register reg D timeSets serial timeout in ms E?		0.04	and <i>reg+1</i>
with register regRE?0x07Reads Exception valueWC reg,b0x05Writes boolean b to coilW reg, w0x06Writes word w to a single register regWB reg, n, ww 0x100x10Writes multiple words n to a single register regWF reg, n0x10Writes a floating point value n to register reg and reg+1L w0x08Performs loopback test Sets serial timeout in ms E?	RR? reg,n	0x04	Reads <i>n</i> words starting
RE? $0x07$ Reads Exception valueWC reg,b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register regWB reg, n, ww $0x10$ Writes multiple words n to a single register regWF reg, n $0x10$ Writes a floating point value n to register reg and reg+1L w $0x08$ Performs loopback test Sets serial timeout in ms Queries Modbus Error			with register reg
WC reg,b $0x05$ Writes boolean b to coilW reg, w $0x06$ Writes word w to a single register regWB reg, n, ww $0x10$ Writes multiple words n to a single register regWF reg, n $0x10$ Writes a floating point value n to register reg and reg+1L w $0x08$ Performs loopback test D timeE?Queries Modbus Error	RE?	0x07	Reads Exception value
W reg, w $0x06$ Writes word w to a single register regWB reg, n, ww $0x10$ Writes multiple words n to a single register regWF reg, n $0x10$ Writes a floating point value n to register reg and reg+1L w $0x08$ Performs loopback test D timeE?Queries Modbus Error	WC reg,b	0x05	Writes boolean b to coil
$\begin{array}{c} \mbox{register } reg \\ \mbox{WB reg, n, ww} \\ 0x10 & \mbox{Writes multiple words } n \\ to a single register \\ reg \\ \mbox{WF reg, n} & 0x10 & \mbox{Writes a floating point} \\ value \\ n \ to \ register \\ reg \\ and \\ reg + l \\ \mbox{L w} & 0x08 & \mbox{Performs loopback test} \\ \mbox{D time} & \mbox{Sets serial timeout in ms} \\ \mbox{E?} & \mbox{Queries Modbus Error} \end{array}$	W reg, w	0x06	Writes word w to a single
WB reg, n, ww $0x10$ Writes multiple words n to a single register reg WF reg, n $0x10$ Writes a floating point value n to register reg and $reg+1$ L w $0x08$ Performs loopback test D timeD timeSets serial timeout in ms Queries Modbus Error			register reg
$\begin{array}{cccc} 0x10 & \text{Writes multiple words } n \\ & \text{to a single register } reg \\ \text{WF reg, n} & 0x10 & \text{Writes a floating point} \\ & \text{value } n \text{ to register } reg \\ & \text{and } reg+l \\ \text{L w} & 0x08 & \text{Performs loopback test} \\ \text{D time} & \text{Sets serial timeout in ms} \\ \text{E?} & \text{Queries Modbus Error} \end{array}$	WB reg, n	, WW	
$\begin{array}{cccc} & \text{to a single register } reg\\ \text{WF reg, n} & 0x10 & \text{Writes a floating point}\\ & \text{value } n \text{ to register } reg\\ & \text{and } reg+1\\ \text{L w} & 0x08 & \text{Performs loopback test}\\ \text{D time} & \text{Sets serial timeout in ms}\\ \text{E?} & \text{Queries Modbus Error}\\ \end{array}$		0x10	Writes multiple words <i>n</i>
WF reg, n $0x10$ Writes a floating point value n to register reg and reg+1L w $0x08$ Performs loopback testD timeSets serial timeout in msE?Queries Modbus Error			to a single register reg
value n to register reg and $reg+l$ L w0x08D timeSets serial timeout in msE?Queries Modbus Error	WF reg, n	0x10	Writes a floating point
and reg+1L w0x08Performs loopback testD timeSets serial timeout in msE?Queries Modbus Error			value <i>n</i> to register <i>reg</i>
L w0x08Performs loopback testD timeSets serial timeout in msE?Queries Modbus Error			and <i>reg+1</i>
D time Sets serial timeout in ms E? Queries Modbus Error	Lw	0x08	Performs loopback test
E? Queries Modbus Error	D time		Sets serial timeout in ms
	E?		Queries Modbus Error
Register			Register

Physical

Size, L x W x H 139.7 x 139.7 x 17.8 mm (5.5 x 5.5 x 0.7 inches)

Connectors:

GPIB: Serial: Ethernet USB 24-pin IEEE connector 9-pin DE-9P male RJ45 B type

LED Indicators:

PWR, LAN, ACT, RDY, TALK, LSTN, SRQ and ERR

Temperature:

Operation	-10° C to +55° C
Storage	-40° C to +85° C

Humidity:

0-90% RH without condensation

Power: +5 to + 15 Vdc 400 mA (typical)

Supplied Accessories

Instruction Manual Support CD

Compatible Modbus Controllers

The following is a partial list of compatible Modbus RTU Slave Controllers: Watlow F4, F4T, 96, SD and EZ Zone PM series Cincinnati SubZero EZT550

ORDERING INFORMATION	Part Number
Multi-function Modbus RTU Interface Board (includes Manual and Configuration Disk)	9009
Multi-function Modbus RTU Interface Board (Board only)	116116-02

Specifications subject to change without notice. Copyright 2015 ICS Electronics div Systems West, Inc.