INTRODUCTION

The purpose of this application note is to provide guidance and understanding of the GPIB bus to new GPIB bus users or to someone who needs more information on using the GPIB bus’s features. This application note is divided into short chapters. New GPIB bus users are encouraged to read all of the chapters. Experienced users may want to skip to the chapter that deals with their specific subject.

Application Note AB48-12, deals with bus extension problems and how to overcome the GPIB Bus limitations.

Please send all comments to sales@icselect.com. Let us know if there is a subject that needs more coverage or if there is something you feel we left out of this note.

CHAPTER 1 - HISTORY AND CONCEPT

The GPIB bus was invented by Hewlett-Packard Corporation in 1974 to simplify the interconnection of test instruments with computers. At that time, computers were bulky devices and did not have standard interface ports. Instruments then had a connector with parallel BCD output lines that could be connected to a 10 to 20 column BCD printer. Data collection was mainly done by printing the current reading as a line on the printer. Remote control of an instrument was limited to a few input lines on a rear panel connector that selected a couple functions or conversion ranges. A special computer interface had to be designed and built for each instrument that the engineer wanted to add to his test system. Building even the simplest automated test system was a several man-month project.

As conceived by HP, the new Hewlett-Packard Instrument Bus (HP-IB) would use a standard cable to interconnect multiple instruments to the computer. Each instrument would have its own interface electronics and a standard set of responses to commands. The system would be easily expandable so multi-instrument test systems could be put together by piggy backing cables from one instrument to another. There were restrictions on the number of instruments that a driver could drive (14) and the length of the bus cable (20 meters).

Hewlett-Packard proposed the concept to US and International standards bodies in 1974. It was adopted by the IEC committee in Europe in 1975. In the United States, other instrument companies objected to the HP-IB name and so a new name, the General Purpose Instrument Bus (GPIB) was created. The GPIB bus was formally adopted as the IEEE-STD 488 in 1978.

The GPIB (HP-IB) concept is shown in Figure 1. Controllers have the ability to send commands, to talk data onto the bus and to listen to data from devices. Devices can have talk and listen capability. Control can be passed from the active controller (Controller-in-charge) to any device with controller capability. One controller in the system is defined as the System Controller (SC) and it is the initial Controller-in-Charge (CIC).

Devices are addressable as talkers and listeners and have to have a way to set their address. Each device has a primary address between 0 and 30. Address 31 is the Unlisten or Untalk address. Devices can also have secondary addresses that can be used to address device sub-functions or channels. An example is ICS’s 4896 GPIB-to-Quad Serial Interface which uses secondary addresses to address each channel. Although there are 31 primary addresses, IEEE 488 drivers can only drive 14 physical devices.

Some devices can be set to talk-only or to listen-only. This lets two devices communicate without the need for a controller in the system. An example is a DVM that outputs readings and a printer that prints the data.
CHAPTER 2 - GPIB Bus Operation

The IEEE-488 Standard defined an instrument with interface and device partitions as shown in Figure 2. Interface messages and addresses are sent from the controller-in-charge to the device’s interface function. Instrument particular commands such as range, mode etc., are data messages that are passed through the Interface to the device.

![Figure 2 IEEE-488 Instrument](image)

Physical Bus Structure

Physically the GPIB bus is composed of 16 low-true signal lines. Eight of the lines are bidirectional data lines, DIO1-8. Three of the lines are handshake lines, NRFD, NDAC and DAV, that transfer data from the talker to all devices who are addressed to listen. The talker drives the DAV line, the listeners drive the NDAC and NRFD lines. The remaining five lines are used to control the bus’s operation.

ATN (attention) is set true by the controller-in-charge while it is sending interface messages or device addresses. ATN is false when the bus is transmitting data.

EOI (end or identify) can be asserted to mark the last character of a message or asserted with the ATN signal to conduct a parallel poll.

IFC (interface clear) is sent by the system controller to unaddress all devices and places the interface function in a known quiescent state.

REN (remote enable) is sent by the system controller and used with other interface messages or device addresses to select either local or remote control of each device.

SRQ (service request) is sent by any device on the bus that wants service.

Interface Messages

Table 1 lists the GPIB Interface Messages and Addresses with their common mnemonics. MLA, LAD and UNL are listen addresses with hex values of 20 to 3F. MTA, TAD and UNT are talk addresses with hex values of 40-5F. A device normally responds to both talk and listen addresses with the same value. i.e. LAD 4 and TAD 4. Secondary addresses have hex values of 60-7F.

Devices are designed with different IEEE 488 capabilities so not all devices respond to all of the interface messages. Universal messages are recognized by all devices regardless of their address state. Addressed commands are only recognized by devices that are active listeners.

Table 1 488.1 Interface Messages and Addresses

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLA</td>
<td>My listen address (controller to self)</td>
</tr>
<tr>
<td>MTA</td>
<td>My talk address (controller to self)</td>
</tr>
<tr>
<td>LAD</td>
<td>Device listen address (0-30)</td>
</tr>
<tr>
<td>TAD</td>
<td>Device talk address (0-30)</td>
</tr>
<tr>
<td>SAD</td>
<td>Secondary Device address (device optional address of 0-31)</td>
</tr>
<tr>
<td>UNL</td>
<td>Unlisten (LAD 31)</td>
</tr>
<tr>
<td>UNT</td>
<td>Listen (TAD 31)</td>
</tr>
</tbody>
</table>

Universal Commands (to all devices)
- LLO Local Lockout
- DCL Device Clear
- PPU Parallel Poll Unconfigure
- SPE Serial Poll Enable
- SPD Serial Poll Disable

Addressed Commands (to addressed listeners only)
- SDC Selected Device Clear
- GTL Go to Local
- GET Device Trigger
- PPC Parallel Poll Configure
- TCT Take Control

Instrument capabilities are supposed to be listed on the rear panel of the instrument, adjacent to the GPIB connector, so that you can easily tell what a device is capable of doing. Table 2 lists the different Capability Identification Codes.

Table 2 Device Capability Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>Source handshake. SH1 req’d to talk</td>
</tr>
<tr>
<td>AH</td>
<td>Accepter handshake. AH1 req’d to listen</td>
</tr>
<tr>
<td>T</td>
<td>Talker at a primary address</td>
</tr>
<tr>
<td>TE</td>
<td>Talker at a secondary address</td>
</tr>
<tr>
<td>L</td>
<td>Listener at a primary address</td>
</tr>
<tr>
<td>LE</td>
<td>Listener at a secondary address</td>
</tr>
<tr>
<td>SR</td>
<td>Service Request. Requires T or TE capability.</td>
</tr>
<tr>
<td>RL</td>
<td>Remote Local. Requires L or LE capability.</td>
</tr>
<tr>
<td>PP</td>
<td>Parallel Poll. Requires L or LE capability.</td>
</tr>
<tr>
<td>DC</td>
<td>Device Clear. Requires L or LE capability.</td>
</tr>
<tr>
<td>DT</td>
<td>Device Trigger. Requires L or LE capability.</td>
</tr>
<tr>
<td>C</td>
<td>Controller. Normally C0 for a device</td>
</tr>
<tr>
<td>E</td>
<td>Driver type. May be E1, E2 or E1/E2</td>
</tr>
<tr>
<td></td>
<td>E1 for open-collector drivers</td>
</tr>
<tr>
<td></td>
<td>E2 for tristate drivers</td>
</tr>
</tbody>
</table>

A capability code with a zero (i.e. DT0) means no capability for that function. An example of capability codes for a typical instrument is:

SH1,AH1,T6,TE0,L4,LE0,SR1,PP0,DC1,DT0,C0.E1

The Standard also defined a rudimentary Status Byte in the instrument that could be read with a Serial Poll to determine the device’s...
status. See Figure 3. Bit 6 of the Status Byte was defined as the Service Request bit that would be set when other bits in the Status Byte are set. The other bits were user defined. The Service Request pulls the SRQ line low to interrupt the controller. The Service Request is reset when the device is Serial Polled or when the service request cause is satisfied.

![Figure 3 488.1 Status Byte](image)

Parallel Polling allowed the Controller to check the status of up to eight instrument by reading an 8-bit response byte. Each instrument was assigned a particular bit to ‘set’ when parallel polled. Parallel Polling was used in early Hewlett-Packard business computer systems but quickly fell out of favor with test equipment manufacturers and users.

CHAPTER 3 - THE 488.2 STANDARD

The GPIB concept expressed in IEEE-STD 488 made it easy to physically interconnect instruments but it did not make it easy for a programmer to talk to each instrument. Some companies terminated their instrument responses with a carriage return, others used a carriage return-linefeed sequence, or just a linefeed. Number systems, command names and coding depended upon the instrument manufacturer. In an attempt to standardize the instrument formats, Tektronix proposed a set of standard formats in 1985. This was the basis for the IEEE-STD 488.2 standard that was adopted in 1987. At the same time, the original IEEE-488 Standard was renumbered to 488.1.

The new IEEE-488.2 Standard established standard instrument message formats, a set of common commands, a standard Status Reporting Structure and controller protocols that would unify control of instruments made by hundreds of manufacturers.

The standard instrument message format terminates a message with a linefeed and/or by asserting EOI on the last character. Multiple commands in the same message are separated by semicolons. Fixed point data became the default format for numeric responses.

The common command set defined a subset of ten commands that each IEEE-488.2 compatible instrument must respond to plus optional commands for instruments with expanded capabilities. The required common commands simplified instrument programming by giving the programmer a minimal set of commands that he can count on being recognized by each 488.2 instrument. Table 2 lists the 488.2 Common Commands and their functions. Probably the most familiar Common Command is the *IDN? query. This is a good first command to use with an instrument as its response shows what the instrument is and demonstrates that you have communication with the instrument. The most of the remaining commands are used with the IEEE-488.2 Status Reporting Structure.

Table 2 488.2 Common Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear Status Command</td>
</tr>
<tr>
<td>*ESE</td>
<td>Standard Event Status Enable Command</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Standard Event Status Enable Query</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Standard Event Status Register Query (0-255)</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification Query (Company, model, serial number and revision)</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation Complete Query</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset Command</td>
</tr>
<tr>
<td>*SRE</td>
<td>Service Request Enable Command</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service Request Enable Query (0-255)</td>
</tr>
<tr>
<td>*STB?</td>
<td>Status Byte Query Z (0-255)</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test Query</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait-to-Continue Command</td>
</tr>
</tbody>
</table>

Devices that support parallel polls must support the following three commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IST?</td>
<td>Individual Status Query?</td>
</tr>
<tr>
<td>*PRE</td>
<td>Parallel Poll Register Enable Command</td>
</tr>
<tr>
<td>*PRE?</td>
<td>Parallel Poll Register Enable Query</td>
</tr>
</tbody>
</table>

Devices that support Device Trigger must support the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*TRG</td>
<td>Trigger Command</td>
</tr>
</tbody>
</table>

Controllers must support the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PCB</td>
<td>Pass Control Back Command</td>
</tr>
</tbody>
</table>

Devices that save and restore settings support the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RCL</td>
<td>Recall configuration</td>
</tr>
<tr>
<td>*SAV</td>
<td>Save configuration</td>
</tr>
</tbody>
</table>

Devices that save and restore enable register settings support the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PSC</td>
<td>Saves enable register values and enables disables recall</td>
</tr>
<tr>
<td>*PSC?</td>
<td>PSC value query</td>
</tr>
</tbody>
</table>

The IEEE-488.2 Standard Status Reporting Structure is shown in Figure 4. The new Status Reporting Structure expanded on the Status Byte in 488.1 by adding a Standard Event Status Register (ESR Register) and an Output Queue. Enable registers and summation logic was added to the Status Registers so that a user could enable selected bits in any status register and use it to generate a Service Request.

The ESR Register reports standardized device status and command errors. Bit 6 in the ESR Register is not used and can be assigned
Figure 4 488.2 Status Reporting Structure

for any use by the device designer. The Standard Event Status Enable Register is used to select which event bits are summarized into the Status Byte. When an enabled bit in the Event Status Register becomes true, it is ORed into the summary output which sets the ESB bit (bit 5) in the Status Byte Register. Bits in the ESR Register stay set until the register is read by the *ESR? query or cleared by the *CLS command.

The Output Queue contains device responses. Its status is reported in the MAV bit (bit 4) of the Status Byte. Typically this bit is not enabled because the user normally follows a query by reading the response. Reading the MAV bit often generates a query error in many instruments and should be avoided.

The 488.2 Status Byte contains the ESB and MAV bits plus five user definable bits. Bit 6 is still the RQS bit but it now has a dual personality. When the Status Byte is read by a Serial Poll, the RQS bit is reset. When the Status Byte is read by the *STB? query, the MSS bit is left unchanged. Service Request generation is a two step process. When an enabled bit in the ESR Register is set, the summary output sets the ESB bit in the Status Byte Register. If the corresponding SRE bit is enabled, then the RQS bit is set and a SRQ is generated. Reading or clearing the ESR Register, drops the summary output which in turn, resets the ESB bit in the Status Byte. If no other enabled bits in the Status Byte are true, bit 6 and the SRQ line will be reset.

Saving the Device Configuration

488.2 and SCPI compliant devices accept configuration setup commands whose values are saved in an internal nonvolatile memory. The 488.2 *SAV 0 command is used to save the values. The device may also save its current output settings along with the configuration values so be sure that all outputs are in the desired state before sending the device the *SAV 0 command.

Saving the Enable Register Settings

The enable register settings cannot be saved with the *SAV 0 command. The 488.2 Standard defined a PSC flag which enables clearing the ESE and SRE registers at power turn-on. The enable registers are restored to a 0 value at power turn-on when the PSC flag is set on. The *PSC 0 command disables the PSC flag and saves the enable register values. The following example saves the current SRE and ESE settings.

```
ESE 192; SRE 32; *PSC 0
```

Note that a later *PSC 1 command sets the PSC flag which will cause the registers to be cleared at the next power turn-on and revert to their default values.

488.2 differences from 488.1

The 488.2 Standard downgraded the use of the Device Clear command so that it does not reset a device’s outputs and internal memory as might be expected for a 488.1 device. Instead, check the device’s manual and use an *RST or an *RCL 0 command to reset a 488.2 device and restore its power turn-on condition.

The 488.2 Status Reporting Structure in Figure 4 replaced the 488.1 Status Byte shown in Figure 3. Instrument designers were to follow the model of Figure 4 and use register summary outputs or queue status to set bit in the Status Byte. Direct setting of the Status Register bits is not permitted.

Common Controller Protocols

The 488.2 Standard defined several protocols that a 488.2 compliant GPIB controller would execute. The protocols are essentially:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLSPOLL</td>
<td>Serial polls all devices on the bus</td>
</tr>
<tr>
<td>FINDLSTN</td>
<td>Finds and lists the addresses of all of the devices on the bus</td>
</tr>
<tr>
<td>FINDRQS</td>
<td>Finds the first device asserting SRQ</td>
</tr>
<tr>
<td>PASSCTL</td>
<td>Passes control of the bus</td>
</tr>
<tr>
<td>REQUESTCLT</td>
<td>Requests control of the bus</td>
</tr>
<tr>
<td>RESET</td>
<td>Resets all bus devices</td>
</tr>
<tr>
<td>SETADD</td>
<td>Sets a device’s GPIB bus address</td>
</tr>
<tr>
<td>TESTSYS</td>
<td>Self-tests the system</td>
</tr>
</tbody>
</table>
subroutines that operate on all of the GPIB devices connected to the system. Table 4 lists the 488.2 Common Controller Protocols. Most of these protocols operate in systems that contain 488.1 and 488.2 devices. The Reset protocol and the AllSpoll protocol are mandatory for all 488.2 GPIB Controllers. FindLstn is probably the most used protocol as it finds and lists all of the devices on the bus. FindLstn is typically used at the start of a program to verify that the needed devices are connected to the system.

CHAPTER 4 - SCPI COMMANDS

The 488.2 Standard had made it easier to communicate with a GPIB instrument but each instrument still had a unique command set. Even in a family of instruments from the same manufacturer, different instruments often had different commands for similar or identical functions, reflecting the ideas of the instrument designer. The US Air Force recognized this problem in the early 1980s and initiated Project Mate to try to overcome this problem. The Mate Project concept was to create Translation Module Adapters (TMAs) to convert instrument unique commands into the Air Force’s CIIL language. The TMAs could be external hardware adapters or internal firmware converters. The Air Force’s CIIL language was a subset of Atlas. Its drawback was that it did not address a real instrument model and it had very clumsy construction. The other part of the problem was that CIIL language instruments, when developed, did not sell well enough to justify their development costs.

Hewlett-Packard worked on the problem and in 1990, proposed a Test Measurement Language (TML) that was based on an instrument model. It was a tree-branch type of language that allowed the same commands to be used for instruments from different manufacturers. TML included major command branches that could control virtually all of an instrument’s subsystems. It was an open structure so that other manufacturers could add commands they felt necessary. HP offered to licensed TML to any instrument manufacturer for a small fee and a pledge to obey the TML specification. Almost immediately, Tektronix and some other companies objected to HP controlling the TML specification. HP promptly offered it to a consortium which rechristened it as Standard Commands for Programmable Instruments (SCPI).

SCPI commands use common command words (keywords) and programming syntax to give all instruments a common “look and feel”. Control of any instrument capability that is described in SCPI should be implemented exactly as specified. Guidelines are included for adding new commands in the future without causing programming problems.

The obvious benefit of SCPI for the ATE programmer is in reducing the learning time for programming multiple SCPI instruments since they all use a common command language and syntax. A second benefit of SCPI is that its English like structure and words are self-documenting, eliminating the needs for comments explaining cryptic instrument commands. A third benefit is the interchangeability of newer SCPI instruments for older models or for another manufacturer’s instrument with the same capabilities, and a reduction in programming maintenance when devices wear out and need replacement.

SCPI Command Structure and Examples

SCPI commands are based on a hierarchical structure that eliminates the need for most multi-word mnemonics. Each key word in the command steps the device parser out along the decision branch - similar to a squirrel hopping from the tree trunk out on the branches to the leaves. Subsequent keywords are considered to be at the same branch level until a new complete command is sent to the device. SCPI commands may be abbreviated as shown by the capital letters in Figure 5 or the whole key word may be used when entering a command. Figure 5 shows some single SCPI commands for setting up and querying a serial interface.

- **SYSTem:COMMunicate:SERial:BAUD 9600 <nl>** 'Sets the baud rate
- **SYST:COMM:SER:BAUD? <nl>** 'Queries the baud rate
- **SYST:COMM:SER:BITS 8 <nl>** 'Sets 8 data bits

Figure 5 SCPI Command Examples

Power users may concatenate multiple SCPI commands together on the same line using semicolons as command separators. See Figure 6 below. The first command is always referenced to the root node. Subsequent commands are referenced to the same tree level as the previous command. Starting the subsequent command with a colon puts it back at the root node. IEEE 488.2 common commands and queries can be freely mixed with SCPI messages in the same program message without affecting the above rules. Check your device manual for any command limitations.

- **SYST:COMM:SER:BAUD 9600; BAUD? <nl>**
- **SYST:COMM:SER:BAUD 9600; :SYST:COMM:SER:BITS 8 <nl>**
- **SYST:COMM:SER:BAUD 9600; BAUD?; BITS 8; BITS?; PACE XON; PACE? <nl>**

Figure 6 Compound Command Examples

A typical response to the last command example in Figure 6 would be: 9600;8; XON

The response includes three items because the command contains three queries. The first item is 9600 which is the baud rate, the second item is 8 (bits/word) which is the current setting. The third item XON means that XON is active. It is always a good idea to check the device’s error light or read its ESR register with the ESR? query when first using a compound command with a device to be sure that it was accepted by the device’s parser.
SCPI Variables and Channel Lists

SCPI variables are separated by a space from the last keyword in the SCPI command. The variables can be numeric values, boolean values or ASCII strings. Numeric values are typically decimal numbers unless otherwise stated. When setting or querying register values, the decimal variable represents the sum of the binary bit weights for the bits with a logic ‘1’ value. e.g. a decimal value of 23 represents 16 + 4 + 2 + 1 or 0001 0111 in binary. Boolean values can be either 0 or 1 or else OFF or ON. ASCII strings can be any legal ASCII character between 0 and 255 decimal except for 10 which is the Linefeed character.

Channel lists are used as a way of listing multiple values. Channel lists are enclosed in parenthesis and start with the ASCII ‘@’ character as shown below in Figure 7. The values are separated with commas. The length of the channel list is determined by the device. A range of values can also be indicated by the two end values separated by a colon. There is a space between the ‘@’ and the first value. e.g.

- (@1,2,3,4) ‘lists sequential values
- (@ 1:4) ‘shows a range of sequential values
- (@ 1,5,7,3, 4) ‘lists random values

Figure 7 Channel List Examples

SCPI Error Reporting

SCPI provides a means of reporting errors by responses to the SYST:ERR? query. If the SCPI error queue is empty, the unit responds with 0, “No error” message. The error queue is cleared at power turn-on, by a *CLS command or by reading all current error messages. The error messages and numbers are defined by the SCPI specification and are the same for all SCPI devices. There is some overlap in reading the SCPI error messages and in querying the device’s ESR Register. You may still have to send the device a *CLS command or separately query the ESR Register to reset the error bits in the ESR Register.

CHAPTER 5 - GETTING STARTED

Now that you have a background on the GPIB bus you probably want to know how to use the GPIB bus to get things done. This Chapter deals with some general suggestions for putting the system together.

Bus Controllers

Most GPIB Bus controllers now are PCs with an add-on GPIB Controllers. These add-on controllers take the following forms:

1. ISA or PCI Cards installed in PCs
2. PCMCIA Cards in Portable PCs
3. Serial Port to GPIB Controllers
4. USB-to-GPIB Controllers
5. Ethernet-to-GPIB Controllers

Cards installed in PCs include ISA, AT, and PCI bus cards. PCI and PCI Express cards are the only cards available now as the ISA and AT buses are obsolete. GPIB Controller cards are also available for the PC/104 bus. Cards can be obtained from Adlink, ICS Electronics, Keysight (formerly Agilent and Hewlett-Packard), Measurement Computing and National Instruments.

PCMCIA cards were available for portable or laptop computers. but they have been superseded by USB-to-GPIB Controllers.

Serial-to GPIB Controllers have had a variety of applications over the years. They can be connected to a Computer’s COM port or to a USB to serial adapter (like ICS’s I-7560) since COM ports are no longer being built into PCs. They were great with older laptops that had COM ports and for controlling instruments in a remote locations by being connected to a modem and phone line. Some Serial-to GPIB Controllers have RS-422/RS-485 interfaces and can be run at distances up to 1200 meters from the PC. Newer applications for the Serial-to-GPIB Controllers are controlling GPIB instruments from a PLC or from an embedded PC card. Serial-to-GPIB Controllers can be obtained from ICS Electronics and National Instruments.

USB-to-GPIB Controllers can be connected to the USB connector on the Desktop PCs, portable PCs and iPads. Requirements are that the computer must be running a Windows operating system. USB Controllers are available from ICS Electronics, Keysight (formerly Agilent) and National Instruments.

Ethernet-to-GPIB Controllers (Ethernet Gateways) can be connected to a test PC, to the company network or to the Internet and run from remote locations. Some are VXI-11 compliant so they can be operated by any computer that can make RPC calls in the client program. Ethernet to GPIB Controllers are available from ICS Electronics , Keysight (formerly Agilent), National Instruments and ProLogix. ICS’s and Keysight’s Controllers are VXI-11 compatible. NI’s Enet series Controllers use a proprietary communication protocol. ProLogix uses TCP (raw socket).

Applications on PCs with Windows operating systems typically make VISA calls. VISA libraries have a standardized API that a user...
can call and generate the VXI-11 protocol to communicate with the Ethernet-to-GPIB Controller. See ICS Application Note AB80-11 for more information about the VXI-11 protocol.

Linux, Unix and OS X computer programmers typically use RPC calls. These operating systems include a rpcgen utility that converts the VXI-11 rrpc library into computer specific libraries that can then be included in the test application. See ICS’s Application Notes, AB80-3 and AB80-12.

GPIB Bus Cables

Standard GPIB cables can be obtained from a number of sources including your GPIB Controller card manufacturer. They are available with the standard piggyback connectors at both ends or with a straight-in cable connector on one end of the cable. Use good quality multi-shielded cables to avoid EMI/RFI problems. If in doubt, ask your GPIB cable provider if the cables have passed a CE test. If so, they should be able to provide you with a CE certificate.

Total GPIB cable length in a system should not exceed 20 meters. For maximum data transfer rates, cable length between devices should not exceed 2 meters.

GPIB cables are often shipped with a ‘brightener’ on the connector contacts. This ‘brightener’ is a waxy organic substance to keep the contacts bright. If you start getting bad data, clean the GPIB connector contacts. Use a mild soap solution (a couple of drops of a dish detergent in a cup of water) to wash off the brightener. Clean the contacts with alcohol and blow dry the connector.

Device Addresses

GPIB devices and controllers can be assigned any primary address between 0 and 30. Assign a different address to each GPIB device. Avoid using addresses 0 and 21 as these are typically used by the GPIB controller. (The GPIB address is software set and is not the GPIB controller card’s internal PCI bus address.) ICS and National Instruments’ controllers typically use GPIB address 0. Keysight Controllers typically use GPIB address 21. Address 31 is reserved for the Unlisten and Untalk address.

Devices with multiple channels may use secondary addresses to quickly address the channel. An example is ICS’s 4896 GPIB to Quad Serial Interface. Channels 1-4 are the serial IO channels 11-14 are for setting the serial channel configurations.

GPIB Devices typically use a dip switch with five rockers to set the GPIB address. The rocker bit weights are 16, 8, 4, 2, and 1. Other rockers may set talk-only or listen-only modes and should be left off for use in a system with a GPIB Bus Controller. Always reset the instrument or power it off and back on after changing its address setting.

Some GPIB devices use front panel controls to set their GPIB addresses. These devices save the GPIB address in a nonvolatile memory. Follow the manufacturer’s instructions when changing their GPIB address setting.

ICS’s VISAkybd program lets you do many of the things that GPIBkybd does but it does them by making VISA calls. It lets you open a VISA session to the Controller or VXI-11.3 instrument with a GPIB address, with a TCP/IP address or as a VISA Resource. ICS’s VISAkybd program operates with VISA libraries from Agilent and National Instruments. Use the VISAkybd program when controlling Ethernet-to-GPIB Controllers from a Windows based PC or when testing a GPIB controller or GPIB instrument through a VISA library.

ICS’s M95kybd program lets you control ICS’s Serial-to-GPIB Controllers and the devices connected to it by just putting the Controller or device command message in the Command window. The program automatically formats the command to end it to the instrument and reads back the response for you.

Older control programs like National Instruments’ ibic program are low level, DOS command line programs that use NI’s older ib commands to control GPIB devices. National Instruments’ ibic program requires you enter the controller card’s ‘ib’ type command to communicate with the device.

Interactive Keyboard Control Programs

Keyboard control programs are programs that let you interactively control and query a GPIB device by entering device related commands on the PC keyboard. The better programs do most of the work for you so you do not have to know the GPIB command syntax to use them. Some GPIB Controllers are supplied with these kind of programs. If you have one, use it to check out your GPIB controller and devices before writing your program.

ICS’s GPIBKybd program is a graphical Windows program that lets the user control GPIB devices by simply entering a device specific message in a text box and by clicking on buttons to send the message and/or perform 488.1 commands like Serial Poll, Device Trigger or Device Clear. ICS’s GPIBKybd program runs the 488.2 FindLstn protocol to find your GPIB device(s) when the program is started. The found devices are listed in the Response box and the program sets the device address to the lowest found device address. ICS’s GPIBKybd program interfaces with the GPIB32.DLL so it can operate GPIB controllers cards from ICS Electronics, Measurement Computing, National Instruments and any other manufacturer who supplies an equivalent GPIB-32.DLL. You can download a free copy of ICS’s GPIBKybd program from ICS’s website at http://www.icselect.com/prgupdates.html.

ICS’s VISAkybd program lets you do many of the things that GPIBKybd does but it does them by making VISA calls. It lets you open a VISA session to the Controller or VXI-11.3 instrument with a GPIB address, with a TCP/IP address or as a VISA Resource. ICS’s VISAkybd program operates with VISA libraries from Agilent and National Instruments. Use the VISAkybd program when controlling Ethernet-to-GPIB Controllers from a Windows based PC or when testing a GPIB controller or GPIB instrument through a VISA library.

ICS’s M95kybd program lets you control ICS’s Serial-to-GPIB Controllers and the devices connected to it by just putting the Controller or device command message in the Command window. The program automatically formats the command to end it to the instrument and reads back the response for you.

Older control programs like National Instruments’ ibic program are low level, DOS command line programs that use NI’s older ib commands to control GPIB devices. National Instruments’ ibic program requires you enter the controller card’s ‘ib’ type command to communicate with the device.
CHAPTER 6 - WRITING GPIB PROGRAMS

GPIB programs are simple programs with three major sections: Initializa-
tion, main body and the closing. Most programs use just 6 to 8 commands so it is not necessary to learn all of the GPIB commands to develop a good GPIB program. Program complexity increases with the number of devices being controlled and number of tests, not the number of commands used in the program. Programs can be written in C/C++ or in Visual Basic. Test programs can also be developed with graphical languages such as National Instrument’s LabVIEW or Agilent’s VEE.

This chapter provides directions for initializing the GPIB Controller and bus and for sending data to or reading data back from a GPIB device. Program examples are shown in BASIC syntax with ICS Electronics older PC2 commands and with National Instruments’ style commands. (NI commands include their original 488 command set and the newer 488.2 command set.) ICS and many other manufacturers such as Adlink and Measurement Computing have adopted the NI command sets for use in their current GPIB controllers. The concepts and examples given herein should apply to most GPIB Controllers.

GPIB Command Concept

GPIB commands in a program are a bit like the layers of an onion. The inner layer is the device specific command that you want to send to the device. i.e.

*RST, *IDN? or SYST:COMM:SERIAL:BAUD 9600

The next layer is the command required by your GPIB controller to send or receive data or carry out some action on the GPIB bus.

Examples are:

- Output (DevAddr%, "*RST")
- Enter (DevAddr%, Rdg$)
- or Trigger (DevAddr%)

The third layer is the calling convention that your programming language or programming style dictates. Some commands can be called with the standard CALL command. Other commands or languages equate an error variable to a return value that indicates if the command was successfully executed. Some examples are:

CALL Output (DevAddr%, OutputStr$, Len)
ioerr% = Output (DevAddr%, OutputStr$, Len)

Error Processing

Most GPIB command libraries have a way of determining whether the command was successfully executed by the GPIB controller. This does not mean that the device did what you wanted, just that the GPIB controller got the command to the device.

The error variable is set when the command is executed. The variable can be set by equating it to the command because the command returns the error variable. In other cases, the error is a separate variable that can be checked. It is a good plan to test the error variable after every command to be sure there were no problems with the command or with the device. This is done by adding a conditional test to the program after each instruction.

In the above example, the subroutine ProcessError tests the variable. If ioerr% is not zero, ProcessError will displays the appropriate error message in a box to the user. Examples of the Process Error routine are found in ICS’s example Visual Basic programs.

Call = Send(Bd, Addr, OutputStr$, EOTMode)
If (ibsta AND EERR) then
 Call ReportError(Addr, " Did not respond")
End If

In this example, the test was done in the program. If the error variable, ibsta, was true, then ReportError was called to display the error.

The most common error is a timeout error. A timeout occurs when the instrument fails to respond to the command within the user’s preset timeout period. The user should set the timeout to a realistic value of 1 to 10 seconds to avoid system problems from accidentally triggering the timeout. As a rule, do not set timeouts to short values based on an instrument’s specified performance. These values might be good under controlled circumstances but may fail in a test environment.

The user will have to develop a strategy to deal with timeouts and other errors. In some cases, a simple message box display of the error is sufficient and the operator can manually deal with it. In other cases, you may want the program to automatically recover from the error restart or continue the test.
GPIB Controller Initialization

The GPIB Controller Card should be initialized to be sure that it is the System Controller and Controller-in-charge of the bus. The bus is then initialized to be sure that all of the devices are in a non-addressed state after their power turn-on. This is done by having the GPIB Controller issue an Interface Clear command (IFC pulse) and assert the REN line. It is also a good idea to check or set the bus timeout. The bus timeout is the amount of time that the program will wait for a device to respond to a command before recognizing the error condition. (Some GPIB controller drivers include the controller initialization but it is a good idea to include it in our program to avoid problems when running with different GPIB controllers.)

In ICS’s 488.2V4 Driver, this is done with the following commands:

Call SendIFC
Call ibSRE(Bd%, 1)
Call ibTM0(Bd%, T3s)

It is good practice to do error checking after every command. See the example on page 4-5 in the 488.2V4 Manual or consult your controller’s manual for error checking.

In the NI 488.2 Command Set, the initialization is done with the following commands:

Call SendIFC(Bd%)
Call ibsre(Bd%, 1)
Call ibtmo(Bd%, T3s)

The NI 488 command, ibsre, is used to set REN because there is not an equivalent NI 488.2 command. The NI 488 command, ibtmo, is used to set the timeout because there is not equivalent NI 488.2 command. T3s is a predefined constant for 3 seconds. If timeout is set to 0 (or TNONE), the GPIB bus (and your program) will be held as long as it takes for a device to complete its instruction. The 0 setting is not recommended except when debugging hardware.

NI 488 commands can be included in an NI 488.2 program when there is not an equivalent NI 488.2 function. The NI 488.2 Command Set returns errors in the command status in iberr and sets ibsta. ibsta should be checked after every command to be sure the command was executed correctly.

Device Address Formats

The format of the device address in ICS’s command set depends upon the operating system. In the 488.2V4 Driver, the device address format is pp or ppss where pp is a primary address and ss is a secondary address. Valid addresses are:

- 0 to 30 for pp
- 100 to 3030 for ppss

In the old PC2 Windows driver, ICS adopted the Hewlett-Packard convention and the address became cardno pp or cardno pp ss where the device address also includes the card number. ICS copied Hewlett-Packard and numbered the first card as 7. Subsequent cards are numbered 6 down to 4. Valid device PC2 addresses are:

ICS Electronics • Phone: (925) 416-1000 • Fax: (925) 416-0105 • http://www.icselect.com

To address a device at primary address 4,

\[\text{Address} = 7 \cdot 04 = 704 \]

To address a device with a primary address of 4 at secondary address 2,

\[\text{Address} = 7 \cdot 04 \cdot 02 = 70402 \]

The National Instruments NI 488.2 Commands use two variables, Bd and Address to express the device address. Bd contains the Card number and is 0 for the first card. Address is a 16 bit variable with the secondary address in the upper byte and the primary address in the lower byte.

\[\text{Address\%} = (ss + 96) \cdot 256 + pp \]

To address a device at primary address 4,

\[\text{Address\%} = 0 + 4 = 4 \]

To address a device with a primary address of 4 at secondary address 2,

\[\text{Address\%} = (02 + 96) \cdot 256 + 4 \\
= 98 \cdot 256 + 4 \\
= 25088 + 4 = 25092 \]

Sending Data to a Device

Data or device commands are normally sent to a device as strings of ASCII characters. Typical device commands are DVM setup commands, baud rate commands to a GPIB-to-Serial converter, or digital data to a Parallel interface.

The IEEE-488.2 Standard requires that GPIB Controllers terminate device messages with a linefeed character and assert EOI on the last character. A device must recognize either terminator. Linefeeds may be omitted if you are sending binary data and the linefeed would look like a data character. Check your GPIB Controller’s driver for information on how it terminates your device messages.

In ICS’s 488-PC2 Command Set, ASCII data is sent by first specifying the string and then calling the ieOutput command:

\[\text{Outstring\$} = \text{“Command to be sent”} \]

\[L = \text{Len(Outstring\$)} \]

\[\text{ioerr\%} = \text{ieOutput(DevAddr, OutString\$, L)} \]

In the NI 488.2 Command Set, ASCII data is sent by specifying the Output String and then calling the Send command.

\[\text{Outstring\$} = \text{“Command to be sent”} \]

\[\text{Call} = \text{Send(Bd, Addr, OutString\$, EOTMode)} \]

You can also embed the command string in the call line. e.g.

\[\text{Call} = \text{Send(Bd, Addr, “Command to be sent”, EOTMode)} \]
EOTMode is a flag that tells the Send command how to terminate the command string. NLend is a predefined constant that sends a linefeed with EOI asserted after the last data character. The above command then becomes:

\[
\text{Call} = \text{Send}(\text{Bd, Addr, OutString$}, \text{NLend})
\]

VISA's viPrintf and the older NI 'ib' commands require that the user include the terminating character in the command string. Some examples of the Outstring$ are:

- \text{Outstring$} = "\ast\text{idn}\? \n" \quad \text{for C}
- \text{Outstring$} = "\ast\text{idn}\?" + \text{CHR$(10)} \quad \text{for Visual Basic}

Reading Data from a Device

ASCII data strings are read from a device by first specifying an empty string and then reading the data into the string. Data is read until a terminator is found or the defined Input string is full. Typical terminators are linefeed or EOI asserted on the last character. An example in ICS's 488.2V4 Driver is:

In the ICS's 488.2V4 and in NI's 488.2 Command Sets the input example is:

\[
\text{Instring$} = \text{String$(\text{Lin}, 32)} \quad \text{fills the string with spaces}
\text{ioerr%} = \text{Receive}(\text{Bd, Addr, Instring$}, \text{Term})
\]

Term or Termination is the flag used to signal the end of the data. Term can be set to any ASCII character between 0 and FF HEX and the Receive process will stop when that character is detected. If Term is set to the predefined STOPend constant, the Receive process stops when EOI is detected. If set to a hex value such as 0A for linefeed, the receive process will stop when a linefeed or EOI is detected.

Clearing a Device

Some devices have buffers that accumulate unwanted data and it occasionally becomes necessary to clear out the old data or return a device to a known condition. This is done by sending the device the Device Clear Command. In the 488.2V4 and in the NI 488.2 Command Set this is done with:

\[
\text{Call DevClear (Bd%, Addr)}
\]

Triggering a Device

Some devices can take actions based on an external trigger. In some cases this trigger is in the form of a pulse from an external device; in other cases this is a GPIB command. Some instruments can use either type of a trigger. In the 488.1 Standard, a programmed Device Trigger command is the GET interface message that is sent to a device with ATN asserted. (See Table 1) A GET is not sent as the ACSI string 'Device Trigger'.

In the 488.2V4 and in the NI 488.2 Command Set a GET is done with:

\[
\text{Call Trigger (Bd%, Addr)}
\]

Sending Bus Interface Messages and Addresses to a Device

Sometimes it is necessary to send Bus Interface Messages (GPIB Command characters) or Address commands to a device to address a device as a talker or as a listener or to enter a special configuration mode. Interface Messages or Addresses are sent to a device with ATN on. They can be represented by an equivalent ASCII character. Refer to Chapter 1 for a list of these commands.

The 488.2 Standard introduced a command ‘\ast\text{TRG}’ that can be used to trigger a 488.2 compatible instrument. *TRG command is sent as a data string. i.e.

\[
\text{Call Send (Bd%, Addr, ‘*TRG’, EOTmode)}
\]

The EOT mode can add a linefeed terminator and/or assert EOI on the last output character.

SCPI introduced the instrument model and a root command called ‘INIT’ that enables the trigger process. If you have a SCPI instrument, check its manual to see how you initialize its trigger generating process before sending it a trigger command.

Reading the Device Status

Sometimes it is desirable to read the device’s Status Register to see if it has data, has a problem or has completed some task. Devices report their status (Status Register contents) in response to Serial polls. 488.2 devices also report their status in response to the *STB? query. Consult the device’s instruction manual for the meaning of the bits in its Status Register.

For the ICS’s 488.2V4 and in NI’s 488.2 Command Sets use:

\[
\text{Call ReadStatusByte(Bd, Addr, DevStatus)}
\]

Serial Polling the device will cause it to reset its RQS bit and it will no longer assert the SRQ line. However multiple devices may be asserting the SRQ line and requesting service. The user’s program should retest the SRQ line and Serial Poll the remaining instruments that are enabled to set the SRQ line until all devices have been serviced.

When the Serial Poll returns a value that indicates that the device is requesting service, the user may have to examine the Status Register bits to see why the device requested service. If a Register Summary bit is asserted, the user will have to query that register to learn why the device requested service. i.e.

\[
\text{If (Status% AND 32)=32 then}
\quad \text{Send(Bd, Addr, ‘*ESR?’), EOTMode)}
\quad \text{Instring$}=""
\quad \text{Call Receive(Bd, Addr, Instring$, Term)}
\]

ICS Electronics • 7034 Commerce Circle, Pleasanton, CA 94588 • http://www.icselect.com
interprets the mnemonics and converts them into GPIB bus bytes. In the following example, CmdStr$ is set to the escape sequence used with some of ICS’s Miniboxes to put them in their command mode. Consult the GPIB Controller’s Command Reference section for the ieSend command mnemonics.

\[
\text{CmdStr$ = “UNL LISTEN 4 UNL LISTEN 4 UNL”}
\]

\[
L = \text{Len (CmdStr$)}
\]

\[
ioerr\% = \text{ieSend(DevAddr, CmdStr$, L)}
\]

In the ICS 488.2V4 and NI 488.2 Command Sets, the Interface Messages and Addresses are sent by specifying the equivalent ASCII characters. i.e.

\[
\text{CmdStr$ = Chr$(&H3F) + CHR$(Addr + 32)+ Chr$(&H3F) + CHR$(Addr + 32) + Chr$(&H3F)}
\]

\[
\text{Call SendCmds (Bd\%, CmdStr$)}
\]

Where Addr is the device’s address. The NI 488.2 SendCmds command outputs the bytes passed to it in CmdStr$ without the interpretation done by ICS’s ieSend command.

Program Closing

Some GPIB Controller DLLs require that you issue a close command when exiting the program to cleanup the computer’s memory and/or to unlock the GPIB controller card for use by another application. Follow the program rules for your GPIB Controller card to end your GPIB program.

CHAPTER 7 - PROGRAMMING HINTS

When writing a test program, it is often handy to create a subroutine that combines cmdSend and cmdReceive as a single subroutine to reduce your coding effort. The subroutine should output the command string, check for a question mark, and if one is present read the device response. It also can do any necessary string cleanup such as removing trailing spaces and linefeeds and return the cleaned response string to the calling program. An example of its use is:

\[
\text{CmdStr$ = “*ESR?”}
\]

\[
\text{Call Sout(dvm, Cmdstr$)}
\]

\[
\text{If Val (Rdg$) <> 0 then…..}
\]

Otherwise this would be:

\[
\text{CmdStr$ = “*ESR?”}
\]

\[
\text{eotmode} = \text{GPIB32Funcs.NLend}
\]

\[
\text{Call Send(Bd, dvm, Cmdstr$, eotmode)}
\]

\[
\text{If (GPIB32Funcs.ibsta And GPIB32Funcs.EERR) Then}
\]

\[
\text{Call gpiberr(“Send error”)}
\]

\[
\text{txtError.Text} = \text{RetMsg}
\]

\[
\text{txtError.Visible} = \text{True}
\]

\[
\text{Else}
\]

\[
\text{txtError.Visible} = \text{False}
\]

\[
\text{txtResults.Text} = \text{RTrim(Instring)}
\]

\[
\text{Rdg$ = RTrim(Instring)}
\]

\[
\text{End If}
\]

\[
\text{End If}
\]

Reading the response is made conditional by checking for a “?” in the command. Cmdstr$ and Rdg$ variables should be dimensioned as public so they can be passed to the different subroutines.

SUMMARY

This application note has attempted to explain the GPIB bus to an person who is unfamiliar with it and to provide some history and an overview of how to use it in your system. Programming suggestions are included to simplify your initial programming efforts.