

Introduction

The 4823A's operation is controlled by a configuration table stored in the program memory (EPROM). For standard units, the table is set to the default values shown on page 3 and 4 . The purpose of this application note is to provide the user with sufficient directions so he or she can alter 4823A's configuration table to match a specific application.

General Instructions

The user can change the configuration stored in the program memory by changing the appropriate field in this table and by recalculating the EPROM check-sum. The different field name and bit assignments are defined in Table 1 on page 3.

1. By toggling the appropriate bit in the POLARITY field (address 308) the user can alter the polarity of individual handshaking signals.
2. The user can add LF (Linefeed) option to the BCD talk messages by toggling the least significant bit of OPTION field (address 309).
3. The TALK CONVERSATION TABLE can be altered by changing the content of address 30A to 319 with the desired conversion values.
4. The RSV field is reserved for SRQ masking. By unmasking a bit field, (set 1) the corresponding Serial Poll Response bit will be enabled and the 4823A will generate an SRQ on the next occurrence of an unmasked bit. Please refer to 4823A manual for complete descriptions of Serial Poll Responses.
5. To change the nibble assignments or alignments, the user has to answer the following questions:
6. Number of channels to be assigned (1 or 2): \qquad
If the answer is 1 , change the content of NOFCHN (address 31A) to 0F hex. On the other hand, if the answer is 2 , you change the content of NOFCHN to 0Dhex.
7. Number of nibbles assigned to Ch. 1 Listen port: ___ $=$ LN1
8. Number of nibbles assigned to Ch. 1 Talk port: $\quad=$ TN1
9. Number of nibbles assigned to Ch. 2 Listen port: ___ $=$ LN2
10. Number of nibbles assigned to Ch. 2 Talk port: ___ $=$ TN2

Note: The total number of nibbles used (LN1+TN1+LN2+TN2) must be less than or equal to 20 .
Now, change the current nibble counts (bit 0-4) in LF1, LF2, TF1, TF2 (addresses 300, 301, 304, 305 respectively) to the respective values LN1, LN2, TN1, TN2.
6. Before we can assign nibbles, three rules must be observed:
a. The nibbles must be aligned in a way such that all assigned Talk and Listen ports fit.
b. There is not any port overlap.
c. All nibbles are numbered from 0 to 19 .
6.1 Start nibble number of Listen Port 1: __ = LSTRN1
6.2 Start nibble number of Talk Port 1: $\quad=$ TSTRN1
6.3 Start nibble number of Listen Port 2: ___ LSTRN2
6.4 Start nibble number of Talk Port 2: $\quad=\quad$ TSTRN2

Now, change the starting nibble number in LFSTR1, LFSTR2, TFSTR1, TFSTR2 (addresses 302, 303, 306, 307 respectively) to the values for new LSTRN1, LSTRN2, TSTRN1, and TSTRN2.

Example Changes

Suppose, we want to assign a 2 channel 4823A with the following port assignments:

Channel 1: 4 Listen nibbles (starting from 0)
4 Talk nibbles (starting from 4)
Channel 2: 6 Listen nibbles (starting from 8)
6 Talk nibbles (starting from 14)
Therefore we alter the following fields:
NOFCHN \quad (addr. 31A) $=0$ Dhex
LF1 $\quad($ addr. 300 $)=01000100$ bin $=44$ hex
LF2 $\quad($ addr. 301 $)=01000100$ bin $=44$ hex
LFSTR1 $\quad($ addr. 302 $)=00 h e x$
LFSTR2 $\quad($ addr. 303 $)=08$ hex
TFSTR1 $\quad($ addr. 306 $)=04 h e x$
TFSTR2 (addr. 307) = 0Ehex

Programming Instructions

Copy the object code from the original 4823A EPROM into the PROM Programmer's memory. Change only the locations listed in Table 1. Calculate the PROM check-sum with your EPROM programmer. Set byte 07FF so that the sum of the PROM is 00 . The PROM Programmer should show the sum of all of the bytes in the EPROM as XX00 in which the last 2 digits should be 00 . Copy the modified object code to a new EPROM and insert the new EPROM in the 4823A. Do not erase the 4823A's original EPROM.

If the 4823A PWR LED blinks when power is turned on, it indicates that there was a EPROM check-sum error. Fix the check-sum and reprogram the EPROM.

TABLE 1 4823A CONFIGURATION TABLE

```
23TABLES ORG 0300H
*
INITBL EQU $
* LISTEN FLAGS STORE CHANNEL LISTEN CONTROL INFO
* LF1 = FLAG FOR CH #1
* LF2 = FLAG FOR CH #2
* LISTEN FLAGS CHANNEL1/2
* BIT MEANING
* 7 1 = BINARY, 0 = BCD DATA
* 6 1 = HI, 0 = LO TRUE DATA
* 5 1 = LISTEN HANDSHAKE WITH STAT A
* 4-0 NUMBER OF NIBBLES ASSIGNED
LF1 DB 01001010B 10 NIBBLES 4A
LF2 DB 01000000B 4O
*
*LISTEN CHANNEL STARTING ADDRESS
* LFSTR1 = STARTING NIBBLE NUMBER FOR CH #1
* LFSTR2 = STARTING NIBBLE NUMBER FOR CH #2
* THERE ARE 20 NIBBLES, NUMBER }1\mathrm{ TO 19 IN BINARY
*
lllo
*
* TALK FLAGS STORE CHANNEL TALK CONTROL INFO
* TF1 = FLAG FOR CH #1
* TF2 = FLAG FOR CH #2
* TALK FLAGS CHANNEL 1/2
* BIT MEANING
* 7 1 = BINARY, 0 = BCD DATA
* 6 1 = HI, 0 = LO TRUE DATA
* 5 1 = TALK HANDSHAKE WITH EDR
* 4-0 NUMBER OF NIBBLES ASSIGNED
TF1 DB 01101010B
6A
TF2 DB 01100000B
* TALK CHANNEL STARTING ADDRESS
* TFSTR1 = STARTING NIBBLE NUMBER FOR CH #1
* TFSTR2 = STARTING NIBBLE NUMBER FOR CH #2
*
TFSTR1 DB 00001010B
TFSTR2 DB 00000000B
```

* POLARITY BYTE SETS CHANNEL SIGNAL AND DATA POLARITIES FOR BOTH CHANNELS
* POLARITIES CHANNEL $1 / 2$
* BIT MEANING $1=\mathrm{HI}, \quad 0=$ LO TRUE/ACTIVE
* 7 DATA STROBE POLARITY
* 6 CLEAR STROBE POLARITY
* 5 REM SIGNAL POLARITY
* 4 RESET SIGNAL POLARITY
* 3 STAT B POLARITY
* 2 STAT A POLARITY

TABLE 1 4823A CONFIGURATION TABLE (CONTINUED)

```
* 1 INH SIGNAL POLARITY
* 0 EDR STROBE POLARITY
*
POL1 DB 00001000B
*
* OPTION BYTE CONTROL ADDITION OF LF TO TALK MSG TERMINATOR
* OPTIONS CHANNEL 1/2
* BIT MEANING 1 = OPTION IN EFFECT
* 7-1 UNASSIGNED MUST BE 0
* 0 LF OPTION (LF ADDED TO BCD TALK MSG)
OPT1 DB 00000001B
*
* TALK CONVERSION TABLE
* # # # N.B. - TABLE ORGANIZED IN REVERSE ORDER !!! # # #
TCT1 DB ' E,.-+9876543210'
*
* NUMBER BYTE CONTROLS NUMBER OF 4823A CHANNELS
* N.B. A SINGLE CHANNEL CAN BE BOTH A TALKER AND A LISTENER
* NUMBER OF CHANNELS
* OF = SINGLE CHANNEL
* OD = TWO CHANNELS
NOFCHN DB OFH
* RSV BIT MASK; 1 ENABLES SRQ ON TRUE STATE OF CORRESPONDING
* SERIAL POLL RESPONSE BYTE
*
*RSV DB 10001001B
*
* TABLE ORGANIZATION
ADDRESS BYTE
0300 LF1
0301 LF2
0 3 0 2 ~ L F S T R 1
0 3 0 3 ~ L F S T R 2
0304 TF1
0305 TF2
0306 TFSTR1
0307 TFSTR2
0308 POL1
0309 OPT1
030A TCT1 (MSB)
    - T
0309 TCT16 (LSB)
031A NOFCHN
031B RSV
```

