
1
1/00

ICS

AB48-18

APPLICATION
BULLETIN

USING THE 4863/2363 STATUS REPORTING STRUCTURE
TO MONITOR DIGITAL SIGNALS

INTRODUCTION

IEEE-488.2 compatible devices like ICS's 4863 and 2363
have a Status Reporting Structure that can be used to report
internal events and to monitor external signals for changes.
The way these registers work and their variety of program-
mable options is often confusing to the user. This Application
Note provides information on how the event registers work
and how to program the 4863 or the 2363 to take advantage
of their ability to detect signal changes. The program infor-
mation in this application note is applicable to ICS's Model
4803 and 2303 OEM boards, to all of the 486x and 236x series
Interfaces and to other IEEE-488.2 compatible instruments.

BACKGROUND

ICS's 4863 or 2363 Digital Interfaces, like all other IEEE
488.2 devices, have an Event Status Register that reports
command and device errors. The bit assignments in the Event
Status Register are defined by the IEEE 488.2 Standard. The
4863 and 2363 also have an additional Questionable Register
that can be used to report changes in fifteen digital input lines.
Bit assignments in the Questionable Register correspond to
the modules' first fifteen digital input lines and ultimately to
the signals that the modules are connected to. By properly
setting the Questionable Transition and Enable Registers, the
modules can continuously monitor selected signals for changes
and generate an Service Request when a change occurs. This
capability relieves the user of having to continuously poll the
modules to check the signal status.

STATUS REGISTER OPERATION

Figure 1 shows the 4863/2363's Status Reporting Structure.
The 4863/2363's Status Reporting Structure is similar to the
standard IEEE-488.2 Structure but includes the Questionable
and Conditional Registers added by the SCPI Standard. (The

SCPI Standard defined a standard command set for program-
mable instruments and added two register to the IEEE-488.2
Status Structure.)

EVENT STATUS REGISTER SET

The Event Status Register is shown at the top of Figure 1. In
an IEEE-488.2 device, bits in the Event Status Register report
command and device errors as specified in the IEEE-488.2
Standard. The some of the Event Status Register bits report
command syntax, parameter and value out of range errors.
Two of the Event Status Register bits can be used by the
device designer. In the 4863/2363, bit 6 is used to indicate
that data is available from an external device. Bits in the
Event Status Register are set when the corresponding condi-
tion occurs. i.e. Bit 5 sets when a unrecognized command is
detected. Once an event bit is set, it stays on until the register
is read or cleared by the *CLS command.

The Event Status Enable Register is located just below the
Event Status Register in Figure 1. The Enable register is used
to select which bits will be ORed together to create the ESR
summary signal. When an Enable Register bit is set and the
corresponding Event bit sets, the summary bit becomes true.
The ESR summary signal reports to bit 5 in the Status Byte
Register at the bottom of Figure 1. The user can set or query
the Event Status Enable register at any time.

QUESTIONABLE REGISTER SET

The Questionable Register set is shown in the center right
portion of Figure 1. The Questionable Register Set was added
to the IEEE-488.2 structure by the SCPI Standard and con-
sists of a Condition Register, a Transition Register, an Event
Register and an Enable Register. SCPI STATUS subsystem
commands are used to control and query the Questionable
Register.

ICS
ELECTRONICSICS

division of Systems West Inc.

2
1/00

Figure 1 4863/2363 Status Structure

Read by Serial Poll when SOURCE set to INTERNALRQS

MSS

Service
Request
Generation

{

{
Read by *STB?

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 Service Request
Enable Register
**SRE<>, *SRE?

ESBMAV

Status Byte Register

+

Standard
Event Status

Register

Queue
Not-Empty

Output Queue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Lo
gi

ca
l O

R

P
ow

er
 O

n

E
xt

er
na

l D
at

a
R

ea
dy

C
om

m
an

d
E

rr
or

E
xe

cu
tio

n
E

rr
or

 -
 N

ot
e

1

E
2 R

O
M

 D
at

a
C

or
ru

pt
ed

Q
ue

ry
 E

rr
or

no
t u

se
d

O
pe

ra
tio

n
C

om
pl

et
e

*ESR?

Standard
Event Status

Enable
Register

*ESE <NRf>
*ESE?

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&

Questionable
Event
Register

Questionable Enable Register

&
&

&
&

15

15÷ 8 7 6 5 4 3 2 1 0

&

&
&

&

15 Digital Inputs

Questionable
Condition
Register

N
ot

 u
se

d

15 :14...7 6 5 4 3 2 1 0

+

15
Transistion
Register

Operation
Event
Register

Operation Enable Register

&
&

&
&

15 : 8 7 6 5 4 3 2 1 0

15÷ 8 7 6 5 4 3 2 1 0

&

&
&

&

Operation
Condition
Register

N
ot

U
se

d

 :15 8 7 6 5 4 3 2 1 0

+

15 : 8 7 6 5 4 3 2 1 0 Transistion
 Register

W
T

G

14...7 6 5 4 3 2 1 0

14...7 6 5 4 3 2 1 0

S
ta

tu
s

A

S
ta

tu
s

B

11 4 3 2 1 8 7 6 5

Note 1 - Execution Error
includes EDR not set and
missing Listen handshake
errors.

3
1/00

The Questionable Condition Register reports the current
status of any signals connected to it. In the case of the 4863
and 2363, this is the state of the first fifteen digital input lines.
A Conditional Register can be queried at any time to check on
the state of its input signals with the STAT:QUES:COND?
query.

The Questionable Transition Register is a two stage filter that
lets only selected signal changes pass onto the Questionable
Event Register. The Transition register stages can sense
positive and/or negative going changes in the Conditional
Register. Since the Condition register always reflects the
status of its input signals, the transition register is effectively
operating on the input signals. To sense a positive going
signal change (0->1), set the corresponding PTR bit in the
Transition Register. To sense a negative going signal change
(1->0), set the corresponding NTR bit in the Transition
Register. When a transition is sensed, the corresponding bit
in the Questionable Event Register becomes set. The follow-
ing example sets bit 0 for a positive signal transition, bit 1 for
a negative signal transition and bit 2 for a signal change in
either direction.

e.g. STAT:QUES:PTR 5
STAT:QUES:NTR 6

Sets the Transition Register bits 2 1 0 Bits
as shown in the figure on the right + +

 - -

The Questionable Event and Enable Registers are similar to
those in the Event Status Register. An input change from the
Transition Register sets the corresponding bit in the Ques-
tionable Event Register. Bits in the Questionable Event
Register stay set until the register is read or cleared with the
*CLS command. The Questionable Enable register is used
to select which Event bits will be ORed together to create the
Questionable summary signal. When a Questionable Enable
Register bit is set and the corresponding Questionable Event
bit sets, the summary bit becomes true. The Questionable
summary signal reports to bit 3 in the Status Byte Register at
the bottom of Figure 1. The user can set or query the
Questionable Enable register at any time. The Questionable
Enable Register is set with the STAT:QUES:ENAB com-
mand.

STATUS BYTE REGISTER SET

The Status Byte Registers are shown at the bottom of Figure
1. They consist of a Status register and an Enable register.
The Status Register follows the state of its input signals and
is used as a point to summarize the signals. It can be queried
repeatedly by serial polling or with the *STB? query without
changing the status of its inputs. The Status Request Enable
Register controls which Status Register bits will set the RQS/

MSS bit (bit 6) and generate a Service Request. In the 4863,
the Service Request asserts the SRQ line on the GPIB bus. In
the 2363, the Service Request sends a serial message to the
host computer. The message format is SRMnn where nn is the
decimal value of the Status Byte Register. The Status Request
Enable Register is controlled by the IEEE-488.2 *SRE
command. e.g. *SRE 40 sets Status Request Enable Register
bits 3 and 5 which in turn enable either the ESR or the
Questionable Register summary bits to generate a Service
Request.

When multiple bits or events are enabled, a Service
Request is generated by the first bit to become true. A new
Service Request will not be generated if a subsequent bit
becomes true while the original bit is still on. Put another
way, the user should service an enabled event as soon as it
is reported to avoid blocking another Service Request.

4863 APPLICATION

The Event63 program demonstrates how the 4863 or 2363
can be programmed to generate Service Requests for com-
mand syntax errors and digital input signal changes. A GPIB
cable is used to connect a 4863 to a PC with an internal ICS
Model 488-PC2 Controller Card as shown in Figure 2. (A
null modem cable can be used to connect a 2363 to a PC's
COM port.)

4863
Digital
Inputs

GPIB

Figure 2 4863 Demonstration Setup

Event63 is a Quick Basic program that runs in DOS or in a
DOS window on a PC. The program, shown in Figure 3, lets
the user select an internal GPIB card in the PC to drive a 4863
over the GPIB bus or select a COM port to drive a 2363 with
an RS-232 interface. The heart of the program is the setup
commands that are sent to the 4863 or 2363 and the queries
used to check the Questionable Registers. They can be
duplicated in your own program and with minor modifica-
tions, be expanded to include more input signals, sense other
signal transitions and more Event Status conditions.

The Event63 program is longer than a user's application
program would be because Event63 is a demonstration
program that supports both serial and GPIB devices. A large
part of the program deals with the user's selection of the
interface and its initialization. This dual usage also compli-
cates the program's I/O functions.

4
1/00

When the program starts, the user selects the interface and the
program then initializes the interface. The Device Setup
commands configure the first eight digital signals as inputs,
set the Questionable NTR register to sense negative signal
transitions, and set the Questionable Enable register to OR all
eight input bits onto the Questionable Summary line. The
setup commands also enable bit 5 in the Event Status Register
to report command syntax errors.

In the Test Loop, the program then loops waiting for a key
stroke, SRQ or SRM message. Command syntax errors are
created by sending a bad command (*EEE) to the module
when the user presses the 'E' key. Digital input signal changes
are created when the user grounds one of the first eight input
lines. (Use CH1 on pin 20) . Either event causes the 4863 to
generate an SRQ or the 2363 to output a SRM message. The
value of the status byte causes the program to branch to a
Questionable register service routine or to the ESR service
routine. The function, msDelay, is borowed from ICS's
IEEE-488.2 GPIB Driver.

In the Questionable register routine, the Status Byte Register,
Questionable Event and Condition registers are sampled
every 1.5 seconds until the digital line is no longer grounded.
Because the Questionable Event register cleared when it was
first read, the Status Byte and Questionable Event Registers
read zero after the first sample.

In the ESR routine, the Status Byte Register and ESR register
are read twice. The first time, the registers display the value
for the syntax error, the second time they read zero since the
ESR register was cleared when it was first read.

SUMMARY

This application note has described how the 4863 and 2363's
Status Reporting Structure works, how to program the mod-
ules to monitor their digital inputs and how to generate
Service Requests when a signals change state. By changing
the NTR and PTR Transition Register settings and the Enable
Register mask, the user can have the modules monitor any
combination of input signals. Source and executable versions
of the listed Event63 program are available on disk so the user
can try the program before writing one of his own or copy
portions of it into the final application program.

Figure 3 EVENT63 Program Listing

DECLARE SUB Sout (ADDR%, Soutstr$)
DECLARE SUB Clrlines (Topline!, Bottomline!)
‘
‘**
‘ FILE NAME: Event63.BAS *
‘ *
‘ Event Detection Demonstration Program *
‘ *
‘ DATE: 02-25-97 *
‘ AUTHOR: G.MERCOLA *
‘ REMARK: Program uses Questionable Register to capture signal *
‘ changes. *
‘ *
‘ LIBRARY FILE: PC2qbdos.QLB If run from inside the environment *
‘ Place program, include files and libraries in QB45 directory *
‘ From DOS type >QB event63 /l pc2qbdos *
‘ Use Alt R and Start to run the program *
‘**
‘ N.B. Change RevDate$ when making changes
‘REVISION CHANGE *

‘===
COMMON SHARED EVENT.STATUS$, RDG$, UUT%, Escstr$
COMMON SHARED SPACE64S AS STRING * 64 ‘space string for initializing input strings

DIM SHARED Serflg AS INTEGER
DIM SHARED L AS INTEGER

‘ $INCLUDE: ‘C:\QB45\PC2INCL.BAS’
‘ $INCLUDE: ‘C:\QB45\PC2COM.BAS’
‘
‘ initialize string variables
‘
RevDate$ = “03-11-97”

5
1/00

SETTING% = &H100 ‘select basic compiler
T% = 1000 ‘set time out period to 1 sec
DEFINT A-Z
EVENT.STATUS$ = “*ESR?”
Escstr$ = “UNL LISTEN 04 UNL LISTEN 04 UNL” ‘minibox escape sequence
SPACE64S = STRING$(54, “ “)
‘ Set device addresses
UUT% = 4 ‘GPIB or serial device address
NoAddr% = -1
‘
‘ INITIALIZATION
‘
‘ SELECTION SCREEN
‘
 COLOR 15, 1 ‘white letters
 CLS
 LOCATE 2, 12 ‘Title
 PRINT “WELCOME TO THE ICS SIGNAL CHANGE DETECTION PROGRAM”
 LOCATE 3, 28
 PRINT “Revised “ + RevDate$
Ireenter: ‘I/O port selection
 LOCATE 5, 5
 dummy$ = “ “
 INPUT “Select 488-PC2 card, 4818, or COMM port (4818/488-PC2/1 or 2)”, dummy$
 dummy$ = UCASE$(dummy$)
 LOCATE 5, 1
 PRINT SPACE80S
 IF dummy$ = “4818” THEN ‘select GPIB controller type

IOPORT% = &H378
CALL ieInit(IOPORT%, MYADDR%, SETTING%)
CALL ieTimeOut(T%)
Serflg = 0
PRINT “ Set test unit to address 4 “
msDelay 2000

 ELSEIF dummy$ = “488-PC2” THEN
IOPORT% = &H2E1
CALL ieInit(IOPORT%, MYADDR%, SETTING%)
CALL ieTimeOut(T%)
PRINT “ Set test unit to address 4 “
Serflg = 0
msDelay 2000

 ELSEIF dummy$ = “1” THEN
Serflg = 1

 ELSEIF dummy$ = “2” THEN
Serflg = 2

 ELSE
 GOTO Ireenter
 END IF

 IF Serflg = 0 THEN
 CALL ieInit(IOPORT%, MYADDR%, SETTING%)
 CALL ieTimeOut(T%)
 CALL ieRemote(NoAddr%)
 CALL ieAbort ‘reset the bus and take control
 msDelay 50
 CmdStr$ = “*CLS”
 CALL Sout(UUT%, CmdStr$)
 msDelay 50
 END IF

 IF Serflg <> 0 THEN
 dummy$ = “ “
 LOCATE 5, 5
 PRINT “Default settings are: 9600 baud, no parity, 8 data bits, 1 stop bit “
 PRINT “ and LF terminator. Are these correct? Press Enter for yes or “

Figure 3 EVENT63 Program Listing Cont'd

6
1/00

 INPUT “ enter new setting formated as ‘9600,N,8,1,LF’ “, dummy$
 PRINT
‘
 IF dummy$ = “” THEN
 SETTING$ = “COM1:9600,N,8,1,LF”
 IF Serflg = 1 THEN

SETTING$ = “COM1:” + “9600,N,8,1,LF”
 ELSE

SETTING$ = “COM2:” + “9600,N,8,1,LF”
 END IF
 ELSE
 IF Serflg = 1 THEN

SETTING$ = “COM1:” + dummy$
 ELSE

SETTING$ = “COM2:” + dummy$
 END IF
 END IF

 CLOSE
 IF Serflg = 1 THEN
 OPEN SETTING$ FOR RANDOM AS #2 LEN = 4096
 PRINT “ ***COM1 Selected***”
 CmdStr$ = CHR$(6) + “*CLS”
 CALL Sout(UUT%, CmdStr$)
 ELSEIF Serflg = 2 THEN
 OPEN SETTING$ FOR RANDOM AS #2 LEN = 4096
 PRINT “ ***COM2 Selected***”
 CmdStr$ = CHR$(6) + “*CLS”
 CALL Sout(UUT%, CmdStr$)
 END IF
 END IF
‘
‘ DEVICE SETUP
‘
 PRINT “ Initializing first 8 digital inputs to sense negative signal changes”
 CmdStr$ = “*cls” ‘reset status flags
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “CONF:INP (@ 1)” ‘set byte #1 to inputs
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “STAT:QUES:NTR 255” ‘set negative transition event
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “STAT:QUES:ENAB 255” ‘enable questionable register bits
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “*ESE 32” ‘enable ESR register bits
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “*cls” ‘reset status flags
 msDelay 100
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “*SRE 40” ‘enable questionable and ESR summary bits in Status Reg
 CALL Sout(UUT%, CmdStr$)
 CmdStr$ = “*cls” ‘reset status flags
 msDelay 100
 CALL Sout(UUT%, CmdStr$)

‘ any change in the input bits will generate an SRQ (GPIB) or SRM (Serial message)
 PRINT “ Ground CH1-CH8 inputs to create a Questionable Register Event”
 PRINT “ (J2 pins 18-20, 39-41, or 60-61”
 PRINT “ Press E for an ESR error, press Q to quit”
 ReadFlag = 0
‘

Figure 3 EVENT63 Program Listing Cont'd

7
1/00

Figure 3 EVENT63 Program Listing Cont'd

‘ TEST LOOP
‘
 DO
 IF Serflg = 0 THEN
 SRQ% = ieSRQStat
 IF SRQ% = 1 THEN ‘if SRQ then set ReadFlag

CmdStr$ = “*STB?” ‘do an *STB? here to set Readflg
CALL Sout(UUT%, CmdStr$)
ReadFlag = VAL(RDG$)

 END IF
 ELSEIF Serflg <> 0 THEN
 IF EOF(2) <> -1 THEN ‘if SRM in Rx buffer then set ReadFlag

RDG$ = “”
RDG$ = RDG$ + INPUT$(LOC(2), #2)
L = INSTR(RDG$, “SRM”)
IF L <> 0 THEN
 ReadFlag = VAL(MID$(RDG$, (L + 3), (L + 6)))
END IF

 END IF
 END IF
 IF ReadFlag <> 0 THEN
 DO UNTIL ReadFlag = 0

BEEP
IF (ReadFlag AND 8) = 8 THEN ‘start questionable register loop
 CmdStr$ = “*STB?”
 CALL Sout(UUT%, CmdStr$)
 LOCATE 17, 1
 PRINT SPACE64S
 LOCATE 17, 1
 PRINT “ Status Byte = “ + RDG$
 CmdStr$ = “STAT:QUES:EVENT?”
 CALL Sout(UUT%, CmdStr$)
 LOCATE 19, 1
 PRINT SPACE64S
 LOCATE 19, 1
 PRINT “ Questionable Event Register = “ + RDG$
 CmdStr$ = “STAT:QUES:COND?”
 CALL Sout(UUT%, CmdStr$)
 Inputs% = 32767 - VAL(RDG$)
 LOCATE 21, 1
 PRINT SPACE64S
 LOCATE 21, 1
 PRINT “ Questionable Condition Register = “ + STR$(Inputs%)
 msDelay 1500 ‘wait 1.5 second
 IF Inputs% = 0 THEN
 ReadFlag = 0 ‘stop loop when signal no longer grounded
 CALL Clrlines(17, 21) ‘clear display
 END IF
ELSEIF (ReadFlag AND 32) = 32 THEN ‘else start ESR loop
 CmdStr$ = “*STB?”
 CALL Sout(UUT%, CmdStr$)
 LOCATE 17, 1
 PRINT SPACE64S
 LOCATE 17, 1
 PRINT “ Status Byte = “ + RDG$
 CmdStr$ = “*ESR?”
 CALL Sout(UUT%, CmdStr$)
 LOCATE 19, 1
 PRINT SPACE64S
 LOCATE 19, 1
 PRINT “ Event Status Register = “ + RDG$
 msDelay 1500 ‘wait 1.5 second
 IF VAL(RDG$) = 0 THEN
 ReadFlag = 0 ‘stop loop when ESR condition cleared
 CALL Clrlines(17, 21) ‘clear display

8
1/00

 END IF
ELSE
 ReadFlag = 0
END IF

 LOOP
 END IF
 A$ = INKEY$
 IF UCASE$(A$) = “E” THEN ‘routine to send a bad command
 BEEP
 LOCATE 17, 5
 PRINT “Sending bad command”
 BadCmd$ = “*eee”
 IF Serflg = 0 THEN ‘GPIB output
 CALL ieOutput(UUT%, BadCmd$)
 ELSE ‘serial output
 IF NET.ENA% = 1 THEN

 BadCmd$ = CHR$(2) + CHR$(48 + ADDR%) + BadCmd$
 END IF
 PRINT #2, BadCmd$
 END IF
 msDelay 500
 LOCATE 17, 5
 PRINT SPACE64S
 ELSE
 IF A$ <> “” THEN EXIT DO ‘test for exit
 END IF
 LOOP
END

DEFSNG A-Z
SUB Clrlines (A, B) ‘clears selected screen line area
 FOR I% = A TO B
 LOCATE I%, 1
 PRINT SPACE80S ‘blank the line
 NEXT I%
END SUB

SUB Sout (ADDR%, Soutstr$)
 IF Serflg = 0 THEN ‘GPIB output-input
 CALL ieOutput(ADDR%, Soutstr$)
 IF INSTR(Soutstr$, CHR$(63)) <> 0 THEN ‘input if ?
 RDG$ = SPACE64S
 CALL ieEnter(ADDR%, RDG$)
 END IF
 ELSE ‘serial output
 IF NET.ENA% = 1 THEN

Soutstr$ = CHR$(2) + CHR$(48 + ADDR%) + Soutstr$
 END IF
 PRINT #2, Soutstr$
 msDelay 25
 msDelay 25
 ‘ RDG$ = SPACE64S
 RDG$ = “”
 Prompt = 0
 DO

RDG$ = RDG$ + INPUT$(LOC(2), #2) ‘input until prompt found
Prompt = INSTR(RDG$, CHR$(62))

 LOOP UNTIL Prompt <> 0
 RDG$ = RDG$ + INPUT$(LOC(2), #2) ‘get last LF
 IF INSTR(RDG$, CHR$(10)) <> 0 THEN ‘discard prompt

RDG$ = LEFT$(RDG$, INSTR(RDG$, CHR$(10)))
 END IF
 END IF
END SUB

Figure 3 EVENT63 Program Listing Cont'd

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

