ICS

@ ELECTRONICS

division of Systems West Inc.

AB48-18

APPLICATION

BULLETIN

USING THE 4863/2363 STATUS REPORTING STRUCTURE
TO MONITOR DIGITAL SIGNALS

INTRODUCTION

|EEE-488.2 compatible devices like ICS's 4863 and 2363
have a Status Reporting Structure that can be used to report
internal events and to monitor external signals for changes.
The way these registers work and their variety of program-
mableoptionsisoften confusingtotheuser. ThisApplication
Note provides information on how the event registers work
and how to program the 4863 or the 2363 to take advantage
of their ability to detect signal changes. The program infor-
mation in this application note is applicable to ICS's Model
4803 and 2303 OEM boards, to all of the486x and 236x series
Interfaces and to other IEEE-488.2 compatible instruments.

BACKGROUND

ICS's 4863 or 2363 Digital Interfaces, like all other IEEE
488.2 devices, have an Event Status Register that reports
command and deviceerrors. Thebit assignmentsinthe Event
Status Register are defined by the |EEE 488.2 Standard. The
4863 and 2363 al so have an additional Questionable Register
that can beusedtoreport changesinfifteendigital input lines.
Bit assignments in the Questionable Register correspond to
the modules first fifteen digital input lines and ultimately to
the signals that the modules are connected to. By properly
setting the Questionabl e Transition and Enable Registers, the
modul escan continuously monitor sel ected signal sfor changes
and generate an Service Request when achange occurs. This
capability relievesthe user of having to continuously poll the
modules to check the signal status.

STATUSREGISTER OPERATION

Figure 1 shows the 4863/2363's Status Reporting Structure.
The 4863/2363's Status Reporting Structureis similar to the
standard | EEE-488.2 Structure but i ncludesthe Questionable
and Conditional Registersadded by the SCPI Standard. (The

SCPI Standard defined astandard command set for program-
mableinstruments and added two register to the | EEE-488.2
Status Structure.)

EVENT STATUSREGISTER SET

The Event Status Register isshown at thetop of Figure 1. In
an | EEE-488.2 device, bitsinthe Event Status Regi ster report
command and device errors as specified in the IEEE-488.2
Standard. The some of the Event Status Register bits report
command syntax, parameter and value out of range errors.
Two of the Event Status Register bits can be used by the
device designer. In the 4863/2363, bit 6 is used to indicate
that data is available from an external device. Bitsin the
Event Status Register are set when the corresponding condi-
tion occurs. i.e. Bit 5 setswhen aunrecognized command is
detected. Oncean event bitisset, it stayson until theregister
isread or cleared by the * CLS command.

The Event Status Enable Register is located just below the
Event StatusRegister in Figure 1. The Enableregister isused
to select which bitswill be ORed together to create the ESR
summary signal. When an Enable Register bit is set and the
corresponding Event bit sets, the summary bit becomestrue.
The ESR summary signal reportsto bit 5 in the Status Byte
Register at the bottom of Figure 1. The user can set or query
the Event Status Enable register at any time.

QUESTIONABLE REGISTER SET

The Questionable Register set is shown in the center right
portionof Figure1. TheQuestionableRegister Set wasadded
to the IEEE-488.2 structure by the SCPI Standard and con-
sistsof aCondition Register, a Transition Register, an Event
Register and an Enable Register. SCPI STATUS subsystem
commands are used to control and query the Questionable
Register.
1/00

3
q’ -
> =
S
556
< W g % 5 Standard
s % % g O E o 68 Event Status
5 £ E 5 % > g o Register
s £ Eof& ¢ 3 25 *ESR?
g WO Jwed e oo
716151413(2]1(0 Queue
| T " Not-Empty
\ : T
X |- i i
<&
Y |
8 ® :
D & |
S) ® i Standard
& ® Event Status -
$ REne}the Output Queue
egister
7180514 i OI *ESE <NRf>
*ESE?
©
m < o
- ® O % é g 15 Digital Inputs
23 = & 5 _ Z 114 3218765 .
Operatior ; Questionable
15 8|7|6|5[4|3|2|1|0] Condition 15[14...7] 6| 5[4] 3] 2| 1 Condition
TT T T T T T T Reose T T T T T T T T T "o
15-8]7]6ls5l4al3l2]1]0 Transistion 15114.. 71654l 3[2]1 0ITrar!sistion
. Register Register
Y Y vV Y Y vV vy y : Y Y ¥ v ¥ ¥V ¥V _V_V _ (Quyestionable
Operatio
15:8[7]6]|5[4[3][2]1]0] Elent 15[14..7| 6| 5| 4] 3] 2] 1| 0] Event
— Register 7 Register
y &
| | @ @ + ! @J +
|| 0 | ®
. ® Q)-—Y—] i > @*D__x___)
B Yo | F o
I | | | Il
15:8|7]6]5]4]3]2[1]0] 15+876543210|
Operation Enable Register im- Questionable Enable Register
T H i
! P
S) R—VQ—Q EVSB MAV <---Read by Serial Poll when SOURCE set to INTERNAL
ervice
Request { 7 ﬂ5 413|2|1]|0] status Byte Register
Generation Read by *STB?__» éP MSSe :
' ©® N .
| ® Note 1 - Execution Error
I) + includes EDR not set and
| &% missing Listen handshake
I ® errors.
A @ ————————————— >
| |
{ I T Service R t
7 4 211 ervice Reques
L 61> 3 0 Enable Register

*SRE<>, *SRE?

Figurel 4863/2363 Status Structure

2

1/00

The Questionable Condition Register reports the current
status of any signals connected to it. In the case of the 4863
and 2363, thisisthe state of thefirst fifteen digital input lines.
A Conditional Register canbequeried at any timeto check on
the state of itsinput signals with the STAT:QUES.COND?

query.

The Questionable Transition Register isatwo stagefilter that
lets only selected signal changes pass onto the Questionable
Event Register. The Transition register stages can sense
positive and/or negative going changes in the Conditional
Register. Since the Condition register always reflects the
statusof itsinput signals, thetransition register is effectively
operating on the input signals. To sense a positive going
signal change (0->1), set the corresponding PTR bit in the
Transition Register. To senseanegativegoing signal change
(1->0), set the corresponding NTR bit in the Transition
Register. When atransition is sensed, the corresponding bit
inthe Questionable Event Register becomesset. Thefollow-
ing example setshit 0 for apositive signal transition, bit 1 for
a negative signal transition and bit 2 for a signal change in
either direction.

eg. STAT:QUES.PTR 5

STAT:QUESNTR 6
Sets the Transition Register bits 21 1|0 |Bits
as shown in the figure on the right + +

The Questionable Event and Enable Registers are similar to
thoseinthe Event Status Register. Aninput changefromthe
Transition Register sets the corresponding bit in the Ques-
tionable Event Register. Bits in the Questionable Event
Register stay set until the register isread or cleared with the
*CLS command. The Questionable Enable register is used
to select which Event bitswill be ORed together to createthe
Questionable summary signal. When aQuestionable Enable
Register hit is set and the corresponding Questionable Event
bit sets, the summary bit becomes true. The Questionable
summary signal reportsto bit 3 in the Status Byte Register at
the bottom of Figure 1. The user can set or query the
Questionable Enable register at any time. The Questionable
Enable Register is set with the STAT:QUES.:ENAB com-
mand.

STATUSBYTE REGISTER SET

The Status Byte Registers are shown at the bottom of Figure
1. They consist of a Status register and an Enable register.
The Status Register follows the state of itsinput signals and
isused asapoint to summarizethesignals. It can bequeried
repeatedly by serial polling or with the* STB? query without
changing the status of itsinputs. The Status Request Enable
Register controlswhich Status Register bitswill set the RQS

MSShit (bit 6) and generate a Service Request. 1nthe 4863,
the Service Request assertsthe SRQ lineonthe GPIB bus. In
the 2363, the Service Request sends a serial message to the
host computer. ThemessageformatisSRMnnwherennisthe
decimal valueof the StatusByte Register. The Status Request
Enable Register is controlled by the IEEE-488.2 *SRE
command. e.g.* SRE 40 sets Status Request Enable Register
bits 3 and 5 which in turn enable either the ESR or the
Questionable Register summary bits to generate a Service
Request.

When multiple bits or events are enabled, a Service
Request is generated by the first bit to becometrue. A new
Service Request will not be generated if a subsequent bit
becomes true while the original bit isstill on. Put another
way, the user should service an enabled event as soon as it
is reported to avoid blocking another Service Request.

4863 APPLICATION

The Event63 program demonstrates how the 4863 or 2363
can be programmed to generate Service Requests for com-
mand syntax errorsand digital input signal changes. A GPIB
cableisused to connect a 4863 to a PC with an internal ICS
Model 488-PC2 Controller Card as shown in Figure 2. (A
null modem cable can be used to connect a 2363 to a PC's
COM port.)

4863
GPIB

Digital

Inputs 4_0\01_

Figure2 4863 Demonstration Setup

Event63 is a Quick Basic program that runsin DOSor in a
DOSwindow onaPC. The program, shownin Figure 3, lets
theuser select aninternal GPIB cardinthe PCto drivea4863
over the GPIB bus or select aCOM port to drive a2363 with
an RS-232 interface. The heart of the program is the setup
commands that are sent to the 4863 or 2363 and the queries
used to check the Questionable Registers. They can be
duplicated in your own program and with minor modifica-
tions, be expanded to include moreinput signal's, sense other
signal transitions and more Event Status conditions.

The Event63 program is longer than a user's application
program would be because Event63 is a demonstration
program that supports both serial and GPIB devices. A large
part of the program deals with the user's selection of the
interface and itsinitialization. Thisdual usage aso compli-

cates the program'’s /O functions. e

Whentheprogram starts, theuser selectstheinterfaceandthe
program then initializes the interface. The Device Setup
commands configure the first eight digital signals asinputs,
set the Questionable NTR register to sense negative signal
transitions, and set the Questionable Enabl e register to OR all
eight input bits onto the Questionable Summary line. The
setup commandsal so enablebit 5inthe Event Status Register
to report command syntax errors.

In the Test Loop, the program then loops waiting for a key
stroke, SRQ or SRM message. Command syntax errors are
created by sending a bad command (* EEE) to the module
whentheuser pressesthe 'E'key. Digital input signal changes
are created when the user grounds one of the first eight input
lines. (Use CH1 onpin 20) . Either event causesthe 4863 to
generate an SRQ or the 2363 to output a SRM message. The
value of the status byte causes the program to branch to a
Questionable register service routine or to the ESR service
routine. The function, msDelay, is borowed from ICS's
|EEE-488.2 GPIB Driver.

DECLARE SUB Sout (ADDR%, Soutstr$)

Inthe Questionableregister routine, the Status Byte Register,
Questionable Event and Condition registers are sampled
every 1.5 secondsuntil thedigital lineisno longer grounded.
Because the Questionable Event register cleared when it was
first read, the Status Byte and Questionable Event Registers
read zero after the first sample.

Inthe ESR routine, the Status Byte Register and ESR register
areread twice. Thefirsttime, theregistersdisplay the value
for the syntax error, the second time they read zero since the
ESR register was cleared when it was first read.

SUMMARY

This application note has described how the 4863 and 2363's
Status Reporting Structure works, how to program the mod-
ules to monitor their digital inputs and how to generate
Service Reguests when a signals change state. By changing
theNTR and PTR Transition Register settingsand the Enable
Register mask, the user can have the modules monitor any
combination of input signals. Sourceand executableversions
of thelisted Event63 program areavailableon disk sotheuser
can try the program before writing one of his own or copy
portions of it into the final application program.

DECLARE SUB Clrlines (Topline!, Bottomline!)

fkkhkkhkkhhkhkkhhkhkkhhhkhhkkhhhkhhhkkhhhkkhhhkkhhhhhhkhhhkhhhdhhkdhhhhkhhhkhhkdhkhhxkxkx

‘ FILENAME: Event63.BAS

Event Detection Demonstration Program

' DATE:

02-25-97
* AUTHOR: G.MERCOLA
' REMARK:

changes.

‘ LIBRARY FILE: PC2gbdos.QLB If run from inside the environment
‘ Place program, include files and librariesin QB45 directory
From DOS type >QB event63 /I pc2gbdos
Use Alt R and Start to run the program

Program uses Questionable Register to capture signal

E I T S T B N B N

fkkhkkhhkkhhkhkhhhkhhhhhkhhhkhhhkhhhkkhhhkkhhhhhhkhhhkhhhdhhdhhhhkkhhhkhhkdhkxhhxkxkx

* N.B. Change RevDate$ when making changes

‘REVISION CHANGE

COMMON SHARED EVENT.STATUSS$, RDG$, UUT%, Escstr$
COMMON SHARED SPACEB4S AS STRING * 64 ‘space string for initializing input strings

DIM SHARED Serflg ASINTEGER
DIM SHARED L ASINTEGER

* $INCLUDE: ‘C:\QB45\PC2INCL.BAS'
* $INCLUDE: ‘' C:\QB45\PC2COM.BAS

‘ initialize string variables

RevDate$ = “03-11-97"

Figure3 EVENT63 Program Listing

1/00

SETTING% = &H100 ‘select basic compiler

T% = 1000 ‘set time out period to 1 sec

DEFINT A-Z

EVENT.STATUS$ = “*ESR?"

Escstr$ =“UNL LISTEN 04 UNL LISTEN 04 UNL” ‘minibox escape sequence
SPACEG64S = STRING$(54, “ “)

* Set device addresses

UUT% =4 ‘GPIB or serial device address

NoAddro = -1

“INITIALIZATION

* SELECTION SCREEN

COLOR 15,1 ‘white letters
CLS
LOCATE 2, 12 ‘Title

PRINT “WELCOME TO THE ICS SIGNAL CHANGE DETECTION PROGRAM”
LOCATE 3, 28
PRINT “Revised “ + RevDate$
Ireenter: ‘1/O port selection
LOCATES5, 5
dummy$ =*
INPUT “ Select 488-PC2 card, 4818, or COMM port (4818/488-PC2/1 or 2)”, dummy$
dummy$ = UCASE$(dummy$)
LOCATES, 1
PRINT SPACES0S
IF dummy$ = “4818" THEN ‘select GPIB controller type
IOPORT% = &H378
CALL ielnit(IOPORT%, MYADDR%Y, SETTING%)
CALL ieTimeOut(T%)
Serflg=0
PRINT “ Set test unit to address 4 “
msDelay 2000
EL SEIF dummy$ = “488-PC2" THEN
IOPORT% = &H2E1
CALL ielnit(IOPORT%, MYADDR%Y, SETTING%)
CALL ieTimeOut(T%)
PRINT “ Set test unit to address 4 “
Serflg=0
msDelay 2000
ELSEIF dummy$ =*“1" THEN
Serflg=1
EL SEIF dummy$ =*“2" THEN
Serflg=2

ELSE
GOTO lreenter
END IF

IF Serflg =0 THEN
CALL ielnit(IOPORT%, MY ADDR%, SETTING%)
CALL ieTimeOut(T%)
CALL ieRemote(NoAddr%o)
CALL ieAbort ‘reset the bus and take control
msDelay 50
CmdStr$=“*CLS’
CALL Sout(UUT%, CmdStr$)
msDelay 50
END IF

IF Serflg <> 0 THEN
dummy$ = *
LOCATES5, 5
PRINT “Default settings are: 9600 baud, no parity, 8 data bits, 1 stop bit “
PRINT “ and LF terminator. Are these correct? PressEnter for yesor “

Figure3 EVENT63Program Listing Cont'd
5

INPUT “ enter new setting formated as ' 9600,N,8,1,LF “, dummy$
PRINT

IF dummy$ = “" THEN
SETTING$ = “COM1:9600,N,8,1LF"
IF Serflg = 1 THEN
SETTINGS$ = “COMZL:" + “9600,N,8,1,LF’
ELSE
SETTINGS$ = “COM2:” + “9600,N,8,1,LF’
END IF
ELSE
IF Serflg = 1 THEN
SETTING$ = “COM1” + dummy$
ELSE
SETTINGS$ = “COM2.” + dummy$
END IF
END IF

CLOSE

IF Serflg = 1 THEN
OPEN SETTING$ FOR RANDOM AS#2 LEN = 4096
PRINT“ ***COM1 Selected***”
CmdStr$ = CHR$(6) + “*CLS’
CALL Sout(UUT%, CmdStr$)

ELSEIF Serflg= 2 THEN
OPEN SETTING$ FOR RANDOM AS #2 LEN = 4096
PRINT* ***COM2 Selected***"
CmdStr$ = CHR$(6) + “*CLS’
CALL Sout(UUT%, CmdStr$)

END IF

END IF

‘ DEVICE SETUP

PRINT “ Initializing first 8 digital inputs to sense negative signal changes’

CmdStrg = “*cls’ ‘reset status flags

CALL Sout(UUT%, CmdStr$)

CmdStr$ = “CONF:INP (@ 1)" ‘set byte #1 to inputs

CALL Sout(UUT%, CmdStr$)

CmdStr$ = “STAT:QUESNTR 255" ‘set negative transition event
CALL Sout(UUT%, CmdStr$)

CmdStr$ = “STAT:QUES.ENAB 255" ‘enable questionable register bits
CALL Sout(UUT%, CmdStr$)

CmdSstr$ = “*ESE 32" ‘enable ESR register bits

CALL Sout(UUT%, CmdStr$)

CmdStrg = “*cls’ ‘reset status flags

msDelay 100

CALL Sout(UUT%, CmdStr$)

CmdStr$ = “* SRE 40” “enable questionable and ESR summary bitsin Status Reg
CALL Sout(UUT%, CmdStr$)

CmdStrg = “*cls’ ‘reset status flags

msDelay 100

CALL Sout(UUT%, CmdStrs)

any change in the input bits will generate an SRQ (GPIB) or SRM (Serial message)
PRINT “ Ground CH1-CH8 inputs to create a Questionable Register Event”
PRINT “ (J2 pins 18-20, 39-41, or 60-61"

PRINT “ PressE for an ESR error, press Q to quit”

ReadFlag =0

Figure3 EVENT63Program Listing Cont'd

1/00
6

* TEST LOOP
DO
IF Serflg =0 THEN
SRQ% = ieSRQStat
IF SRQ% =1 THEN ‘if SRQ then set ReadFlag
CmdStr$ =“*STB?’ ‘do an *STB? here to set Readflg
CALL Sout(UUT%, CmdStr$)
ReadFlag = VAL(RDGS$)
END IF
ELSEIF Serflg <> 0THEN
IF EOF(2) <> -1 THEN ‘if SRM in Rx buffer then set ReadFlag
RDG$=""
RDG$ = RDG$ + INPUT$(LOC(2), #2)
L = INSTR(RDGS$, “SRM")
IFL <>0THEN
ReadFlag = VAL(MID$(RDGS$, (L + 3), (L + 6)))
END IF
END IF
END IF
IF ReadFlag <> 0 THEN
DO UNTIL ReadFlag =0
BEEP
IF (ReadFlag AND 8) =8 THEN ‘start questionabl e register loop
CmdStr$ = “*STB?
CALL Sout(UUT%, CmdStr$)
LOCATE 17,1
PRINT SPACE64S
LOCATE 17,1
PRINT “ StatusByte= “ + RDG$
CmdStr$ = “STAT:QUES.EVENT?
CALL Sout(UUT%, CmdStr$)
LOCATE 19,1
PRINT SPACE64S
LOCATE 19,1
PRINT “ Questionable Event Register = “ + RDG$
CmdStr$ = “STAT:QUES.COND?
CALL Sout(UUT%, CmdStr$)
Inputs% = 32767 - VAL(RDG$)
LOCATE?21, 1
PRINT SPACE64S
LOCATE?21, 1
PRINT “ Questionable Condition Register = “ + STR$(Inputs%o)
msDelay 1500 ‘wait 1.5 second
IF Inputs% = 0 THEN
ReadFlag =0 ‘stop loop when signal no longer grounded
CALL Clrlines(17, 21) ‘clear display
END IF
ELSEIF (ReadFlag AND 32) =32 THEN ‘else start ESR loop
CmdStr$ = “*STB?
CALL Sout(UUT%, CmdStrs)
LOCATE 17,1
PRINT SPACE64S
LOCATE 17,1
PRINT “ StatusByte= “ + RDG$
CmdStr$ = “*ESR?
CALL Sout(UUT%, CmdStr$)

LOCATE 19,1

PRINT SPACE64S

LOCATE 19,1

PRINT “ Event Status Register = “ + RDG$

msDelay 1500 ‘wait 1.5 second

IFVAL(RDG$) = 0 THEN
ReadFlag =0 ‘stop loop when ESR condition cleared
CALL Clrlines(17, 21) ‘clear display

Figure3 EVENT63Program Listing Cont'd
7

ICS Electronics

END IF
ELSE
ReadFlag =0
END IF
LOOP
END IF
A$=INKEY$
IF UCASE$(A$) =“E” THEN ‘routine to send a bad command
BEEP
LOCATE 17,5
PRINT “Sending bad command”
BadCmd$ = “*eee”

IF Serflg =0 THEN ‘GPIB output
CALL ieOutput(UUT%, BadCmds$)
ELSE ‘serial output

IF NET.ENA% =1 THEN
BadCmd$ = CHR$(2) + CHR$(48 + ADDR%) + BadCmd$
END IF
PRINT #2, BadCmd$
END IF
msDelay 500
LOCATE 17,5
PRINT SPACE64S
ELSE
IFA$<>“" THEN EXIT DO ‘test for exit
END IF
LOOP
END

DEFSNG A-Z
SUB Clrlines (A, B) ‘clears selected screen line area
FOR1%=ATOB
LOCATE 1%, 1
PRINT SPACE80S ‘blank theline
NEXT 1%
END SUB

SUB Sout (ADDR%, Soutstr$)
IF Serflg=0THEN ‘GPIB output-input
CALL ieOutput(ADDR%, Soutstr$)
IF INSTR(Soutstr$, CHR$(63)) <> 0 THEN ‘input if ?
RDG$ = SPACE64S
CALL ieEnter(ADDR%, RDG$)
END IF
ELSE ‘serial output
IFNET.ENA% =1 THEN
Soutstr$ = CHR$(2) + CHR$(48 + ADDR%) + Soutstr$
END IF
PRINT #2, Soutstr$
msDelay 25
msDelay 25
‘ RDG$ = SPACEB4S
RDG$=""
Prompt =0
DO
RDG$ = RDG$ + INPUTS(LOC(2), #2) ‘input until prompt found
Prompt = INSTR(RDG$, CHR$(62))
LOOP UNTIL Prompt <>0

RDG$ = RDG$ + INPUT$(LOC(2), #2) ‘get last LF
IF INSTR(RDG$, CHR$(10)) <> 0 THEN “discard prompt
RDG$ = LEFT$(RDG$, INSTR(RDG$, CHR$(10)))
END IF
END IF
END SUB

Figure3 EVENT63Program Listing Cont'd

7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000
8

Fax: (925) 416-0105

