
1
1/00

ICS

AB48-20A

APPLICATION
BULLETIN

GENERATING SERIAL WAVEFORMS AND TRANSFERRING DIGITAL DATA
WITH ICS's DIGITAL INTERFACES

INTRODUCTION

This Application Bulletin describes how to generate serial
waveforms from the digital outputs in ICS's GPIB and Serial
Interfaces and techniques to increase the serial data rate. The
same techniques can be used to transfer multiple bytes of data
to a digital device.

This Application Bulletin has been revised to include ex-
amples using the 4803's new BINary format command that
was added to the 4803 when the firmware was upgraded to
Revision 5.

BACKGROUND

Some test and measurement applications require that the test
engineer generate a serial waveform to send data or com-
mands to the device under test. If the serial data format uses
asynchronous ASCII characters, then the test engineer has a
wide choice of serial data sources. He can use the PC's serial
COM ports or one of several GPIB-to-Serial interface prod-
ucts that are on the market. All of these sources are program-
mable and can generate a variety of asynchronous serial
formats and data rates.

Some test applications require non-asynchronous data for-
mats. In these applications, the test engineer needs to gener-
ate binary data, a data clock and often a data gate or strobe
signal to go with the data. Data rate accuracy is normally not
the major consideration as the clock signal is supplied with
the data. These kinds of waveforms can be generated by
successively outputting digital words to the same data port.
By properly coding the digital words, different bits can be
used create the serial data, the serial clock and any other
needed waveforms.

GENERATING SERIAL WAVEFORMS

Figure 1 shows a typical serial waveform with data, a clock
signal and a data gate. The data signal waveform outputs four
bits, 1 0 1 0. The clock waveform is pulsed when the data is
stable. The data gate encloses the active data waveform. The
bit pattern along the bottom of Figure 1 represents the digital
data that has to be outputted to generate the waveforms.

Data

Clock

Gate

1
0
1

1
1
1

1
0
1

0
0
1

0
1
1

0
0
1

1
0
1

1
1
1

1
0
1

0
0
1

0
1
1

0
0
1

0
0
0

Figure 1 Basic Serial Waveforms

The output sequence to generate the waveform sets the data
and then pulses the clock for each data bit. The sequence is
repeated for each serial bit. If a data gate or strobe pulse is
required, it is coded into the output data as shown in Figure 1.

This technique can be expanded to include additional wave-
forms or for full byte-wide data words.

IMPROVED SERIAL WAVEFORM CODING

The output sequence used in Figure 1 requires three digital
words per bit. While workable, it is time consuming. The
serial output can be speeded up by returning the clock to its
inactive level at the same time that the data waveform is
changed to its next value as shown in Figure 2. For most serial
devices, it is only necessary to have the data stable on one
edge of the clock.

ICS
ELECTRONICSICS

division of Systems West Inc.

2 1/00

Data

Clock

Gate

1
0
1

1
1
1

0
0
1

0
1
1

1
0
1

1
1
1

0
0
1

0
1
1

0
0
0

Figure 2 Improved Serial Waveforms

The technique shown in Figure 2 eliminates one output step
per bit and improves the serial data rate by 33% over the basic
serial waveform in Figure 1.

SPEEDING UP SERIAL DATA WAVEFORMS

In general, serial data waveform speed depends upon the
computer program, the number of characters sent to the
interface to generate the waveforms and how the interface is
used. Check your program against the following guidelines:

1. Minimize the number of output steps used to create
the serial waveform. See Figures 1, 2 and 8.

2. Use the shortest commands possible. In ICS prod-
ucts, use the short form commands instead of the
longer SCPI commands to output the data. This
minimizes GPIB bus transfer time and the interface's
parsing time.

3. Use compiled instead of interpretive programs.
4. Use precanned messages where possible.
5. Replace DO-LOOP and FOR-NEXT structures with

linear coding. Listing each output command sepa-
rately is more work but it will execute faster in slow
computers.

Steps 3, 4 and 5 are very important if you are using an older
or slow computer.

GENERATING SERIAL DATA WITH A 4803 OR A
4863 GPIB TO DIGITAL INTERFACE

ICS's Model 4803 and 4863 are GPIB-to-Digital Interfaces
whose outputs can be controlled by the user. There are two
ways to send the 4803 and 4863 digital data. One way is to
send the data with a command. The 4803 or 4863 parses the
command and then outputs the data parameter to the selected
port. The second and faster way is to configure a port as an
output port and then transparently send it data in the dual or
secondary address mode.

SENDING DATA AS A COMMAND PARAMETER

The simplest data transfer method is using the byte output

type commands to send digital data to a selected output byte.
These commands include the port number and a data value in
each command. Value is normally decimal but can be HEX
coded with #h prefix. Figure 3 shows the byte output
commands used to create the waveforms shown in Figure 2.

BO1 5 <lf> 'sends value 05 to port#1
BO1 7 <lf> 'sends value 07 to port#1
BO1 1 <lf> 'sends value 01 to port#1
BO1 3 <lf> 'sends value 03 to port#1
BO1 5 <lf>
BO1 7 <lf>
BO1 1 <lf>
BO1 3 <lf>
BO1 0 <lf> 'sends value 00 to port#1

Figure 3 Byte Out Commands

The 4803/4863 parses each command to output the data. This
takes 12 milliseconds per data byte for early boards with a 6
MHz clock (12.88 MHz crystal). Newer boards with 20 MHz
clocks take 3.5 ms.

For each command, the GPIB bus sends an unlisten com-
mand, addresses the 4803 or 4863 as a listener and sends it the
data bytes. This typically requires three GPIB address bytes
plus 6 data bytes for a total of 9 GPIB bus transactions per
command. Concatenating the commands into one command
line eliminates the 3 GPIB address bytes for each step.
Concatenated commands are separated by semicolons. This
reduces the above commands to:

BO1 5;BO1 7;BO1 1;BO1 3;BO1 5;BO1 7;BO1 1;BO1
3;BO1 0 <lf>

Figure 4 Concatenated Command String

Command length is limited to the size of the GPIB buffer.
Normal input buffer size is 1024 bytes. Check your manual
as some early units had 256 byte input buffers.

USING CONFIGURED OUTPUT BYTES

A faster way to output multiple digital bytes is configure some
ports (bytes) in the 4803 or 4863's parallel interface as output
byte(s) and then send the data to the output byte(s) with a
command or as a transparent string. The number of output
ports depends upon the required number of data lines. This
method can be easily scaled up to transfer multi-byte words
to a digital device. The following example configures byte 1
as an output and uses the PO command to send the same data
as in Figure 4. Again, the data command length is limited by
the size of the GPIB buffer.

 Setup:
CONF:INP (@ 1:5) 'sets all bytes to inputs
CONF:OUT (@ 1) <lf> 'sets an output byte

3
1/00

CONF:OUT:POL 1 <lf> 'sets output polarity
CONF:STB 0 <lf> 'sets data strobe polarity
FORM:LIST HEX <lf> 'sets data format

 Sending Data:

PO 5;PO 7;PO 1:PO 3;PO 5;PO 7;PO 1:PO 3;PO 0<lf>

Figure 5 Using a Configured Output Port to Gener-
ate Serial Waveforms

The configuration commands in the above example define the
output port, the data polarity and the type of data that will be
sent to the port. The HEX data format sends 8-bit values as
two HEX digits, 00 to FF. There is only a single digit in the
above example as the waveform in Figure 2 has only three
lines. HEX and 4833 are the fastest 4803 and 4863 output
formats. HEXList and ASCii are the slowest formats.

MULTIPLE DATA BYTES IN THE SAME
COMMAND

The above example uses 5 GPIB bus transactions for each
data byte. It also uses up a lot of 4803/4863 processing time
as the 4803/4863 has to parse each command. When the 4803
or 4863 parses the command, it outputs data until it sees the
semicolon or linefeed terminator. If multiple data bytes are
sent with each command, the 4803 or 4863 places each byte
in the configured output port(s). Figure 6 shows how to
output the waveform in Figure 2 using multiple data bytes in
one command.

Sending Data:

PO 3571357130<lf>

Figure 6 SENDING MULTIPLE DATA BYTES IN
ONE COMMAND

SENDING DATA TRANSPARENTLY

The transparent data method bypasses the 4803/4863's parser
and uses the 4803/4863's dual or secondary GPIB address
mode. The dual address mode uses consecutive primary
addresses such as 4 and 5. The lower address is used for setup
commands and for transferring data with commands. The
upper or higher address is only used for the transparent data.
The secondary address mode uses one primary address and
two secondary addresses, 00 and 01. Secondary address 00 is
the command address, secondary address 01 is for transparent
data. The choice of which addressing method to use is up to
the user.

In either case, the output port is configured as in Figure 5 and
the data is sent by itself to a different address. Figure 7 shows
the additional address mode command.

 Setup:
CONF:INP (@ 1:5) 'sets all bytes to inputs
CONF:OUT (@ 1) <lf> 'sets an output byte
CONF:OUT:POL 1 <lf> 'sets output polarity
CONF:STB 0 <lf> 'sets data strobe polarity
FORM:LIST HEX <lf> 'sets data format
SYST:COMM:GPIB:ADDR:MODE DUAL <lf>

'enables two primary ad-
dresses

 Sending Data:

3571357130<lf>

Figure 7 Sending the Serial Data Transparently

The order of the address mode command is not important. It
can be done at any time. Provide a short delay of 70 msec after
the address command before sending the 4803 or 4863 any
other commands or data.

OUTPUTTING DIGITAL DATA

Outputting data is very similar to generating serial wave-
forms except that special waveforms like a clock or a data gate
are not required and that all bits are used for data. Data bit to
data bit spacing is normally not critical. The goal is simply to
transfer the data. The data must be stable and then a clock
generated to latch in the data into the receiving device as
shown in Figure 8.

Data Bit 0

Data Strobe

1 0 1 0

Figure 8 Data Byte Waveforms

In the serial waveform examples, the clock was coded as part
of the output waveform. Digital data transfer uses the 4803
or 4863's ability to automatically generate data strobes to
clock data into the receiving device instead of coding the
clock as a separate bit.

Both devices generate a data strobe when they detected a
command terminator or separator. The 4803 and 4863 will
also generate a data strobe if a comma is placed between
multiple data bytes. Figure 9 shows the Sending Data portion
of Figure 6 recoded to generate a data strobe between each
data byte.

Sending Data:

PO 3571357130<lf> ' original line - generates a data
strobe only on last character

PO 3,5,7,1,3,5,7,1,3,0<lf> 'recoded - generates a data
strobe between each data byte

Figure 9 DATA STROBES FOR EACH BYTE

4 1/00

MULTI-BYTE WORDS

The only change needed to output multi-byte words is to
configure additional ports as outputs. Because there is very
little overhead in outputting the additional bytes, multi-byte
words have a higher data transfer rate. Figure 10 shows how
to configure the 4803 to transfer a 16-bit wide word.

 Setup:
CONF:INP (@ 1:5) 'sets all bytes to inputs
CONF:OUT (@ 1,2) <lf> 'sets two output bytes
CONF:OUT:POL 1 <lf> 'sets an output polarity
CONF:STB 0 <lf> 'sets data strobe polarity
FORM:LIST HEX <lf> 'sets output data format

 Sending Data:
PO 0001,FED3,0002,1453,0003, --- 4567<lf>

Figure 10 Transferring 16-bit Wide Data

The data was outputted with a command in the above example.
The loop repeat time is the same for the transparent or the
command transfer methods. There is no significant difference
with either one. Note that spaces may be inserted between the
data groups as they will be ignored by the selected format
command. The HEX ist and ASCii formats that require
commas between data values, need a second comma to gener-
ate a data strobe. i.e. 0,1,,254,... etc.

MAXIMIZING DATA TRANSFER RATE WITH THE
4803's BINARY FORMAT COMMAND

Data transfer rate can be greatly improved by using the 4803's
new BINary output (LISTen) format. The BINary output
format transfers binary bytes between the GPIB bus buffer and
the digital interface and in the dual or secondary address
modes. Binary data strings do not have separators. Spaces are
not allowed between data bytes. Data is simply transferred to
the output bytes until all bytes have data and then a strobe
pulse is generated. If there is more data in the buffer, the cycle
repeats until all of the data has been outputted. To maximize
the data transfer rate, combine the binary data into output
strings, up to 1024 characters long. Send each string to the
4803. The 4803's output burst rate is > 58 k bytes/sec for one
byte-wide words to > 43 k words/sec for four byte-wide
words.

Setup:
SYST:COMM:GPIB:ADDR:MODE DUAL

'enables two primary addresses
CONF:INP (@ 1:5) 'sets all bytes to inputs
CONF:OUT (@ 1,2) 'sets an output bytes
CONF:STB 0 'sets data strobe polarity
FORM:LIST BIN 'selects binary output format

 Sending Data:

0001FED3000214530003 --- 4567
'data ends with EOI asserted on last
character

Figure 11 Binary Transfer of 16-bit Wide
Data

OUTPUTTING SERIAL DATA WITH A 2303 OR a
2363 SERIAL-TO-DIGITAL INTERFACE

ICS's Models 2303 and 2363 Serial-to-Digital Interfaces
convert asynchronous serial data into digital I/O signals.
They use the same commands and have the same digital
interfaces as their GPIB equivalents. However they do not
have a transparent data transfer mode so the user will have to
use either the byte out commands (BOn) or data output
commands (PO) to output the data. BOn commands send data
to the specified port (n) and do not pulse the data strobe
output. PO commands send data to the byte(s) configured as
outputs and do pulse the data strobe output line. All of the
above single address mode examples work with the 2303 and
the 2363.

SUMMARY

This application bulletin has described how the to use ICS's
GPIB to Digital interface modules and cards to generate serial
waveforms. This application note also describes ways to
speed up the user's program and how to minimize the number
of data bytes needed to generate the serial waveforms. In
some cases, the user will be able to reduce the number of data
bytes to one byte per bit. The same technique can be used to
transfer multiple data bytes to another digital device. The
4803's new BINary format has the highest data transfer rates.
HEX or 4833 formats with multiple data bytes per command
maximize the data transfer rates for older firmware.

While this application bulletin was written for GPIB inter-
faces, the Model 2303 and Model 2363 Serial-to-Digital
Interfaces can also be used to generate serial waveforms but
cannot take advantage of the 4803 and 4863's transparent data
transfer capability.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

