
1 1/00

ICS

AB48-24

APPLICATION
BULLETIN

INTRODUCTION

This application note shows how to use an ICS Model 4894A
or a 4804 GPIB-to-Serial Interface to control Modbus De-
vices from the GPIB bus. This application note describes the
Modbus protocol, the connections from a 4894A or 4804 to a
Modbus device and the software that translates commands
into the Modbus RTU protocol. This application note also
includes an example Visual Basic program that lets a user
control Watlow Controllers from a PC keyboard.

MODBUS PROTOCOL

Modicon Corporation, now AEG Schneider, created a serial
protocol known as Modbus for controlling industrial process
control systems. The Modbus protocol is an extremely
reliable protocol for exchanging data in noisy industrial
applications. The Modbus protocol is a packet exchange
protocol where the controller receives a response to each
packet that it sends to a device. Each packet contains the
address of the controller that is to receive the information, a
command field that says what to do with the data fields and a
CRC (Cyclic Redundancy Checksum) field that is used to
validate the packet. The Modbus protocol uses two coding
schemes, ASCII or HEX characters. The HEX character
format is known as the RTU protocol.

Figure 1 shows an Modbus HEX RTU message packet. The
Address and Command fields are 8-bits. The Register-Data
field holds multiple 16-bit words. The CRC field is a 16-bit
word. The protocol uses asynchronous serial characters with
single start and stop bits. Each character holds 8 bits or 2
HEX characters.

 Packet Format: Addr Cmd Registers.... .data CRC

Figure 1 Modbus Packet

USING A 4894A or a 4804 TO CONTROL MODBUS DEVICES
FROM THE GPIB BUS

ICS's GPIB-to-SERIAL INTERFACES

ICS's GPIB-to-Serial Interfaces are IEEE-488.2 compatible
interfaces with several features that make them ideal for
interfacing the GPIB bus to a Modbus device. Both units
operate at baud rates up to 38,400 baud and have RS-232 and
RS-422/RS-485 interfaces for driving Modbus devices in a
one-to-one basis or as a network controller. Both units
transparently convert the binary data characters used in the
Modbus RTU protocol between the GPIB bus and the serial
communications link.

The Model 4894A GPIB-to-Serial Interface is housed in a
small metal case and has an optional kit for mounting in a 19
inch instrument rack. The Model 4804 GPIB-to-Serial Inter-
face is a 4.5 x 5.5 inch board that is intended to be built into
a chassis or into a piece of test equipment.

Both units operate similarly and have the same control and
data modes. At power turn-on, they power up in the data
mode where they transparently transfer data between the
GPIB bus and their serial interfaces. An escape sequence
switches the units into a control mode where the serial settings
can be set by commands from the GPIB bus. The settings are
saved in internal nonvolatile memory.

1
2
3
4
5
6
7
.
.

25

4804
or

4894A

WATLOW

1
.
.

12
13
14
15
16

TXD
RXD

Figure 2 RS-232 Connections to Watlow Controller

ICS
ELECTRONICSICS

division of Systems West Inc.

2 1/00

CONNECTING TO WATLOW CONTROLLERS

All the new Watlow Process Controllers use the Modbus
RTU protocol and are the example Modbus device for this
Application Note. The F4 series Controllers have both RS-
232 and RS-485 interfaces and can be easily connected to the
4894A or 4804 GPIB-to Serial Interface. The RS-232 signals
can be used for short distances and require only three wires as
shown in Figure 2.

RS-485 signals are best for distances over 100 feet, for
electrically noisy environments, or for connecting several
controllers together on a serial network. An RS-485 network
uses two wires that are driven only when a device is transmit-
ting. A resistor termination network holds the two signals in
a mark condition when none of the devices on the network are
transmitting. The termination network is a 1 Kohm pullup, a
120 to 200 ohm load resistor and a 1 Kohm pulldown resistor
as shown in Figure 3. One termination network is sufficient
for short networks. For networks over 100 feet long or in very
noisy environments, place a separate termination network at
each end of the cable. (For more information about RS-485
serial data transmission and termination networks, refer to
ICS's 4894A/4804 Manual or visit our associated website at
http://www.icsdatacom.com)

1
2
14
3
16
.
7
.
.

25

4804
or

4894A

WATLOW
1
.

11
12
13
14
15
16

WATLOW

T+/R+
T-/R-

1KΩ

1KΩ

120Ω

1
.

11
12
13
14
15
16

Figure 3 RS-485 Network Connection

In Figure 3, the termination network is placed on the last RS-
485 device on the network, in this case a Watlow Controller.
Terminal #11 on the Watlow F4 series controllers is a + 5 Vdc
output terminal provided to power the termination network.
Terminal #16 is the controller's ground pin and is used for one
end of the pulldown resistor.

OVERALL SYSTEM

Figure 4 shows the overall system configuration. The PC is
the system controller and the Watlow Process Controller is a
device on the Modbus network. The transmission program in
the PC converts user commands into messages that conform
to the Modbus protocol. The PC then addresses the 4894A
or 4804 to listen and sends it a packet message that is
terminated with EOI asserted on the last character. The
4894A /4804 converts the GPIB message in to a serial packet
and transmits it to the Watlow Controller. The Controller's
response is received by the 4894A/4804 and talked out on the
GPIB bus with EOI on the last byte when the unit is addressed
to talk. The PC program can either wait for a preset amount
of time before reading the response packet or the 4894A/4804
can be set to generate a service request (SRQ) when the
response packet is received from the Watlow Process Con-
troller.

WATLOW

Figure 4 System Configuration

PROTOCOL CONVERSION SOFTWARE

ICS has developed a Visual Basic example program,
GPIB2MOD, that shows how a 4804 or a 4894A can be used
to communicate with a Modbus device from the GPIB bus.
The program assembles device address, command number
and command information into variables that are passed to a
subroutine that prepares the Modbus packet. The packet is
then outputted to the 4894A or 4804 which transmits it
serially to the Modbus device. Received messages are checked
by a subroutine for valid CRCs, then broken apart and the
components are returned to the user. The GPIB2MOD
program displays the results for the user. The subroutines do
the bulk of the message preparation work and make it easy to
adapt the example program to a real application.

The program has two forms, a Main form and a GPIB form.
The Main Form lets the user set the Modbus device address,
send specific queries to the Modbus device and a window for
displaying the response. The Main Form also has boxes
where the user can assemble custom commands by selecting
read or write and entering the register number and register or
data words. Clicking the SEND button, assemblies and
outputs the message. Figure 5 shows the Main Form with the
response to a Read Model# query.

3 1/00

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Figure 5 GPIB2MOD Main Form

The GPIB Form has numerous controls for setting and query-
ing the status of the 4894A or 4804. The GPIB Form enters
the GPIB address of the 4804 or 4894A into the program, sets
the Baud Rate and enables or disables the RS-485 mode. The
form's other controls query many of the 4894A or 4804's
IEEE-488.2 Status Registers, execute several 488.2 protocols
and serial poll the device. These are more controls than you
probably want or need in your application program but they
were included in the example to show the device's capability.
Figure 6 shows the GPIB Form as it appears when first loaded
with the device address set to 4, 9600 baud and RS-485
enabled.

Figure 6 GPIB Form

The GPIB2MOD(bus) program has two .bas files.
PC2W32.bas contains the GPIB constants, variables and
function declarations for the GPIB calls. MODBUS.bas
contains the variables, constants and subroutines that
assemble and dissemble the Modbus packets.

The program communicates with the GPIB bus by making
ICS style driver calls to a 488-PC2 card in the PC. The
program was also compiled with a different PC2W32.BAS
file that uses a translation DLL to make NI 488.2 style calls
that work with ICS's PCI and PCMCIA GPIB Controller
Cards or any GPIB Controller Cards that use the National
Instruments 488.2 Commands. Copies of the program can
be obtained from ICS's web site at http://www.icselect.com.

GPIB2MOD PROGRAM OPERATION

When the GPIB2MOD program is first started, only the
INITIALIZE button is enabled on the Main Form. Clicking
the INITIALIZE button initializes the GPIB Controller Card,
the 4894A or 4804 and the 488.2 Driver software. If the
initialization is successful, the remaining Main Form controls
are enabled. The user should Click the GPIB COMMANDS
AND SETTING button to go to bring up the GPIB Form.
Verify that the GPIB address is the same as the address shown
on the 4894A or 4804 LEDs at power turn-on. The program
defaults to ICS's factory default GPIB address of 4. If the
4804 or 4894A is set to a different address, the address will
have to be changed in the GPIB Address box. Press Set when
done to update the program. Use the *IDN? button to query
the 4894A or 4804's IDN message and verify communication

with the GPIB interface and the correct address setting.

When the GPIB Form opens, the program queries the
4894A/4804 to determine its baud rate and RS485 mode.
The answers are displayed in the Test box as shown in
Figure 6. Verify that the baud rate setting matches the
Watlow controller setting. If the controller is connected to
the 4894A/4804's RS-485 terminals, then the RS485 Mode
should be enabled. This sets the 4894A/4804 to tristate its
transmitter when not transmitting data. Click the EXIT
button to return to the Main Form.

On the Main Form, the Modbus device address defaults to
1 which should match the Watlow Controller's address. To
change the address, enter a new value in the window and
click the SET button. Click the READ MODEL button to
read the controller's model number. The response dis-
played in the Command Response window is decoded to

show the device address, command number, number of re-
sponse bytes, the response data and the CRC number. The
user can select a decimal or HEX coded display by clicking
the option buttons in the MSG FORMAT frame.

4 1/00

The remaining buttons in the MODBUS DEVICE COM-
MANDS frame query the serial number, software revision,
hardware revision, and date settings in the Watlow controller.

The user can send all but the most complex commands to the
Watlow Controller or any Modbus device by filling in the
command windows under the ASSEMBLE OUTPUT COM-
MAND legend and clicking SEND. Use the Read or Write
options to select a command number or enter a value in the
COMMAND NUMBER window. Enter the register number
in the REG# window. Enter any data to be sent in the Data
Field. Multiple data entries must be separated by commas.
The SEND button is enabled when the COMMAND and
REG# fields are filled in. The CLEAR ENTRY button clears
the COMMAND, REG# and DATA windows for a new
command.

WRITING A CUSTOM PROGRAM

The user can easily adapt the GPIB2MOD program's .bas
component files to any Visual Basic program to control
Modbus devices via the GPIB bus. The cmdSEND (click)
listing in Figure 7 shows how to call the
build_modbus_message function which assembles the Mod-
bus packet. The calling function needs four parameters:
command type, Modbus device address, starting register
number and data values. In the GPIB2MOD program, the
command type, starting register and Modbus device address
are entries in text boxes. The data values are an array of up
to 40 entries terminated with the END_OF_DATA_VALUES
constant. For Watlow, each entry is a 16 bit value and
depends upon the command being sent to the controller..
When done, call ICS's ieOutputB function to send the packet
(Outstring$) to the 4894A or 4804. If you are using a GPIB
output command for another card or command language,
select the termination option that only asserts EOI on the last
character.

Provide a short delay (50 ms minimum) to give the Watlow
controller time to receive the serial message and send a
response back to the GPIB interface, before reading the
response message. The messages tested in this program only
took 7 ms, but you need to have some margin for more
complex messages. An alternative method would be to have
the 4894A or 4804 generate a Service Request when it had
data in its RX buffer and then provide a short delay of 10 ms
to allow the remainder of the message to be received before
inputting the response packet. Caution - Do not make the
input call until the complete response message has been
received by the 4804 or 4894A or else you can loose part of
the response.

Follow the read back part of the listing to read the Modbus
response. Use the receive function in the Main Form to read

back the response message. The receive function uses ICS's
ieEnterB function to read in the response message, discards
any excess space characters and returns the response mes-
sage. If you are using another GPIB input command, use a
termination option that only terminates when EOI is asserted.
The Msg_Format flag is set by the user clicking HEX or
Decimal values. Based on the Msg_Format flag setting, call
either the convert_modbus_data_to_decimal function or the
convert_modbus_data_to_hexidecimal function to dissemble
the response message into its components and recover the
response data. The GPIB2MOD program displays the com-
plete response, but you can discard any unnecessary informa-
tion.

If the user's program is written in a Basic language, the Visual
Basic statements are easy to convert. If the user's program is
in C, the Visual Basic example will serve as a guide to the new
program.

SUMMARY

This application note has described how to drive a Modbus
device from the GPIB bus using ICS's Model 4894A or 4804
GPIB-to-Serial Interfaces. Watlow's new F4 series of Pro-
cess Controllers were used as the example device. The wiring
examples and sample code have been tested with a Watlow F4
series controller and should be easily adapted to other Mod-
bus devices.

5 1/00

Private Sub cmdSend_Click() ‘sends general message
 Static data_value!(40)
 comdtype% = Val(txtCmdNum.Text) 'command type
 Start_reg! = Val(TxtReg.Text) 'starting register

 If Len(txtOutput.Text) > 0 Then
 Data$ = txtOutput.Text
 If InStr(txtOutput, “,”) = 0 Then
 data_value!(1) = Val(Data$) 'data values
 data_value!(2) = END_OF_DATA_VALUES
 Else
 I = 1
 Do
 L = InStr(Data$, “,”)
 If L = 0 Then
 newstr$ = Left$(Data$, (Len(Data$)))
 data_value!(I) = Val(newstr$)
 Else
 newstr$ = Left$(Data$, (L - 1))
 data_value!(I) = Val(newstr$)
 newdatastr$ = Right$(Data$, (Len(Data$) - L))
 Data$ = newdatastr$
 End If
 I = I + 1
 Loop Until L = 0
 data_value!(I) = END_OF_DATA_VALUES
 End If

 Else
 data_value!(1) = 1
 data_value!(2) = END_OF_DATA_VALUES
 End If
 OutString$ = build_modbus_message$(comdtype%,
 MBDevice%, Start_reg!, data_value!())
 L = Len(OutString$)
 ioerr% = ieOutputB(CardDev, OutString$, L)

 ‘output command
 ProcessError (ioerr%) 'checks for GPIB command errors

 ‘readback
 Call Tdelay(0.3) ‘delay for serial data
 Instring$ = Receive_msg$() 'input response
 RxLen% = Len(Instring$)
 ProcessError (ioerr%)
 message$ = Instring$
 ‘Msg_Format = DECIMAL_DATA_FMT

'flag set by panel control

 Select Case Left$(message$, 3)
 Case “Bad”
 ‘something was wrong with the message data.
 response$ = message$
 read_data_reg!(1) = -99999
 Case Else
 response$ = Instring$
 Select Case Msg_Format
 Case DECIMAL_DATA_FMT
 ‘convert the modbus response to decimal numbers.

response$=convert_modbus_data_to_decimal$
(MESSAGE_RECEIVED, response$)

 Case HEX_DATA_FMT
 ‘convert the modbus response to hexadecimal numbers.

response$ = convert_modbus_data_to_hex$
(MESSAGE_RECEIVED, response$)

 End Select
 txtResults.Text = Explaination$ & NL & “ “ & response$
 End Select
 txtDataEntry.Visible = False
End Sub

Main Form cmdSEND_Click listing

Figure 7 Main Form cmdSEND_Click listing

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

