ICS

@ ELECTRONICS

division of Systems West Inc.

AB48-24

==
SOECE

APPLICATION

BULLETIN

USING A 4894A or a 4804 TO CONTROL MODBUS DEVICES
FROM THE GPIB BUS

INTRODUCTION

Thisapplication note shows how to usean |CSModel 4894A
or a 4804 GPIB-to-Seria Interface to control Modbus De-
vicesfromthe GPIB bus. Thisapplication note describesthe
Modbus protocol, the connectionsfrom a4894A or 4804 toa
Modbus device and the software that trand ates commands
into the Modbus RTU protocol. This application note also
includes an example Visual Basic program that lets a user
control Watlow Controllers from a PC keyboard.

MODBUS PROTOCOL

Modicon Corporation, now AEG Schneider, created a serial
protocol known as Modbusfor controlling industrial process
control systems. The Modbus protocol is an extremely
reliable protocol for exchanging data in noisy industrial
applications. The Modbus protocol is a packet exchange
protocol where the controller receives a response to each
packet that it sends to a device. Each packet contains the
address of the controller that is to receive the information, a
command field that sayswhat to do with the datafieldsand a
CRC (Cyclic Redundancy Checksum) field that is used to
validate the packet. The Modbus protocol uses two coding
schemes, ASCIl or HEX characters. The HEX character
format is known as the RTU protocol.

Figure 1 shows an Modbus HEX RTU message packet. The
Address and Command fields are 8-bits. The Register-Data
field holds multiple 16-bit words. The CRC field isa 16-bit
word. The protocol usesasynchronousserial characterswith
single start and stop bits. Each character holds 8 hits or 2
HEX characters.

Packet Format: |Addr | Cmd |Registers.... .data | CRC |

Figurel ModbusPacket

1

ICS'sGPIB-to-SERIAL INTERFACES

ICS's GPIB-to-Seria Interfaces are |EEE-488.2 compatible
interfaces with several features that make them ideal for
interfacing the GPIB bus to a Modbus device. Both units
operate at baud rates up to 38,400 baud and have RS-232 and
RS-422/RS-485 interfaces for driving Modbus devicesin a
one-to-one basis or as a network controller. Both units
transparently convert the binary data characters used in the
Modbus RTU protocol between the GPIB bus and the serial
communications link.

The Model 4894A GPIB-to-Serial Interface is housed in a
small metal case and hasan optional kit for mountingina19
inchinstrument rack. The Model 4804 GPIB-to-Serial Inter-
faceisa 4.5 x 5.5 inch board that isintended to be built into
achassis or into a piece of test equipment.

Both units operate similarly and have the same control and
data modes. At power turn-on, they power up in the data
mode where they transparently transfer data between the
GPIB bus and their serial interfaces. An escape sequence
switchestheunitsintoacontrol modewheretheserial settings
can be set by commandsfromthe GPIB bus. Thesettingsare
saved in internal nonvolatile memory.

WATLOW
- [1]
% TXD—» :
3 -+— RXD 1'2
4804 [7 [13]
5 14| O
or & 15|
4894A [T 16| OO 000
25

Figure2 RS-232 Connectionsto Watlow Controlll/e(g0

CONNECTING TO WATLOW CONTROLLERS

All the new Watlow Process Controllers use the Modbus
RTU protocol and are the example Maodbus device for this
Application Note. The F4 series Controllers have both RS-
232 and RS-485 interfaces and can be easily connected to the
4894A or 4804 GPIB-to Serial Interface. TheRS-232signals
can beused for short distancesand requireonly threewiresas
shown in Figure 2.

RS-485 signals are best for distances over 100 feet, for
electrically noisy environments, or for connecting several
controllerstogether on aserial network. An RS-485 network
usestwo wiresthat are driven only when adeviceistransmit-
ting. A resistor termination network holdsthetwo signalsin
amark conditionwhen noneof thedevicesonthenetwork are
transmitting. Thetermination network isa1l Kohm pullup, a
120 to 200 ohm load resistor and a1 K ohm pulldown resi stor
asshownin Figure 3. Onetermination network is sufficient
for short networks. For networksover 100feet longorinvery
noisy environments, place a separate termination network at
each end of the cable. (For more information about RS-485
serial data transmission and termination networks, refer to
ICS's4894A/4804 Manual or visit our associated website at
http://www.icsdatacom.com)

WATLOW
- [1]
2— 11
T+R+
4804 MY TR 2
3 e 113
or 116 |— ﬁ O
4894A 1 1l00 000
[25]
WATLOW
[1]
1KQ |
- 11
120Q|[]4— 12}
13
1KQ ﬁ O
116l O O O O O

Figure3 RS-485 Network Connection

In Figure 3, thetermination network is placed on thelast RS-
485 device on the network, in this case aWatlow Controller.
Terminal #11 ontheWatlow F4 seriescontrollersisa+5Vdc
output terminal provided to power the termination network.
Terminal #16isthecontroller'sground pinandisusedfor one
end of the pulldown resistor.

OVERALL SYSTEM

Figure 4 shows the overall system configuration. The PCis
the system controller and the Watlow Process Controller isa
deviceontheModbusnetwork. Thetransmission programin
the PC converts user commands into messages that conform
to the Modbus protocol. The PC then addresses the 4894A
or 4804 to listen and sends it a packet message that is
terminated with EOI asserted on the last character. The
4894A /4804 convertsthe GPIB messageinto aserial packet
and transmits it to the Watlow Controller. The Controller's
responseisreceived by the 4894A/4804 and talked out on the
GPIB buswith EOI onthelast bytewhentheunit isaddressed
totalk. The PC program can either wait for a preset amount
of timebeforereading theresponse packet or the 4894A/4804
can be set to generate a service request (SRQ) when the
response packet is received from the Watlow Process Con-
troller.

Figured4 System Configuration

PROTOCOL CONVERSION SOFTWARE

ICS has developed a Visual Basic example program,
GPIB2MOD, that shows how a4804 or a4894A can be used
to communicate with a Modbus device from the GPIB bus.
The program assembles device address, command number
and command information into variables that are passed to a
subroutine that prepares the Modbus packet. The packet is
then outputted to the 4894A or 4804 which transmits it
serialy totheModbusdevice. Received messagesarechecked
by a subroutine for valid CRCs, then broken apart and the
components are returned to the user. The GPIB2MOD
program displaystheresultsfor theuser. The subroutinesdo
the bulk of the message preparation work and makeit easy to
adapt the example program to areal application.

The program has two forms, aMain form and a GPIB form.
The Main Form lets the user set the M odbus device address,
send specific queriesto the M odbus device and awindow for
displaying the response. The Main Form also has boxes
where the user can assemble custom commands by selecting
read or write and entering the register number and register or
data words. Clicking the SEND button, assemblies and
outputsthe message. Figure 5 showsthe Main Formwith the

response to a Read Model# query.
1/00

. P bdimin H=E
I8 b ModHis Progrsm
Cumenl fddeess Foo IC5 400-PL2 Card

1 Change MulHux . GFIR Command:
Aatracce | e | st Snlings

Mod Bus Device Commands Mg Foimal

Mpad | Fead Nead [IES0] [IE30] ¥ Decinal

|Model| 5 Salt Hew [r Hex

Haiemble Dutpel Comisand anid Peeis Send

=l

Comrariand Mumhs Rugll Daka Febd

* Aead 3 | | el I

r Wiks Rl
Conmmared Aecpomoe

Adde Cored Dl Reaponae CRC
i i F XD 14iFr

e

The GPIB2MOD(bus) program has two .bas files.
PC2W32.bas contains the GPIB constants, variables and
function declarations for the GPIB cals. MODBUS.bas
contains the variables, constants and subroutines that
assemble and dissemble the Modbus packets.

The program communi cateswith the GPIB busby making
ICS style driver callsto a 488-PC2 card in the PC. The
programwasal socompiledwith adifferent PC2W32.BAS
filethat usesatranslation DL L to make NI 488.2 stylecalls
that work with ICS's PCI and PCMCIA GPIB Controller
Cards or any GPIB Controller Cards that use the National
Instruments 488.2 Commands. Copiesof theprogram can
beobtainedfrom|CSswebsiteat http://www.icselect.com.

Figure5 GPIB2MOD Main Form

The GPIB Form hasnumerous controlsfor setting and query-
ing the status of the 4894A or 4804. The GPIB Form enters
the GPI B address of the 4804 or 4894A into the program, sets
the Baud Rate and enables or disablesthe RS-485mode. The
form's other controls query many of the 4894A or 4804's
| EEE-488.2 StatusRegisters, executeseveral 488.2 protocols
and serial poll the device. These are more controlsthan you
probably want or need in your application program but they
wereincluded in the exampleto show the device's capability.
Figure6 showsthe GPIB Form asit appearswhenfirst |oaded
with the device address set to 4, 9600 baud and RS-485
enabled.

W GPIB Commands and Sehap

GFIH Addemea Baud Raln ASAES Mode
i gRO0 % Enaliled
|q | |
Sel P Seb <

~ Comman Conmardc

“ION? | I5'I'ﬂ'.|‘| *SRE? | *ELR? | ERE? | nay |
~ 488 2 P

Aeren | irvd Lain | FindROS | AlSpl |

E

Conmand Recponce
Unil ol 1o command mode ‘

B sl Ak = GEOD
FSAFS maate 13 ershind

Figure6 GPIB Form

ICS Electronics

7034 Commerce Circle, Pleasanton, CA 94588

3

GPIB2M OD PROGRAM OPERATION

When the GPIB2MOD program is first started, only the
INITIALIZE button is enabled on the Main Form. Clicking
theINITIALIZE buttoninitializesthe GPIB Controller Card,
the 4894A or 4804 and the 488.2 Driver software. If the
initializationissuccessful, theremaining Main Form controls
areenabled. Theuser should Click the GPIB COMMANDS
AND SETTING button to go to bring up the GPIB Form.
Verify that the GPI B addressisthe same astheaddress shown
onthe4894A or 4804 LEDsat power turn-on. The program
defaults to ICS's factory default GPIB address of 4. If the
4804 or 4894A is set to a different address, the address will
haveto be changedinthe GPIB Addressbox. Press Set when
done to update the program. Usethe *IDN? button to query
the4894A or 4804'sI DN message and verify communication
with the GPIB interface and the correct address setting.

When the GPIB Form opens, the program queries the
4894A/4804 to determine its baud rate and RS485 mode.
The answers are displayed in the Test box as shown in
Figure 6. Verify that the baud rate setting matches the
Watlow controller setting. If thecontroller isconnected to
the4894A/4804'sRS-485terminal s, thentheRS485Mode
should be enabled. Thissetsthe4894A/4804 totristateits
transmitter when not transmitting data. Click the EXIT
button to return to the Main Form.

On the Main Form, the M odbus device address defaultsto

1which should matchthe Watlow Controller'saddress. To

change the address, enter a new value in the window and

click the SET button. Click the READ MODEL buttonto

read the controller's model humber. The response dis-

played in the Command Response window is decoded to
show the device address, command number, number of re-
sponse bytes, the response data and the CRC number. The
user can select adecimal or HEX coded display by clicking
the option buttonsin the MSG FORMAT frame.

Phone: (925) 416-1000 Fax: (925) 416-0105
1/00

The remaining buttons in the MODBUS DEVICE COM-
MANDS frame query the serial number, software revision,
hardwarerevision, and datesettingsintheWatlow controller.

The user can send all but the most complex commandsto the
Watlow Controller or any Modbus device by filling in the
command windowsunder the ASSEMBLE OUTPUT COM-
MAND legend and clicking SEND. Use the Read or Write
options to select a command number or enter avalue in the
COMMAND NUMBER window. Enter the register number
in the REG# window. Enter any datato be sent in the Data
Field. Multiple data entries must be separated by commas.
The SEND button is enabled when the COMMAND and
REG#fieldsarefilledin. TheCLEARENTRY button clears
the COMMAND, REG# and DATA windows for a new
command.

WRITING A CUSTOM PROGRAM

The user can easily adapt the GPIB2ZMOD program's .bas
component files to any Visua Basic program to control
Modbus devices viathe GPIB bus. The cmdSEND (click)
listing in Figure 7 shows how to call the
build_modbus_message function which assembles the M od-
bus packet. The calling function needs four parameters:
command type, Modbus device address, starting register
number and data values. In the GPIB2MOD program, the
command type, starting register and Modbus device address
are entries in text boxes. The data values are an array of up
to40entriesterminatedwiththeEND_OF DATA_VALUES
constant. For Watlow, each entry is a 16 bit value and
depends upon the command being sent to the controller..
When done, call ICS'sieOutputB function to send the packet
(Outstring$) to the 4894A or 4804. If you areusing aGPIB
output command for another card or command language,
sel ect the termination option that only asserts EOI on thelast
character.

Provide a short delay (50 ms minimum) to give the Watlow
controller time to receive the serial message and send a
response back to the GPIB interface, before reading the
response message. The messagestested in thisprogram only
took 7 ms, but you need to have some margin for more
complex messages. An aternative method would beto have
the 4894A or 4804 generate a Service Request when it had
datainits RX buffer and then provide ashort delay of 10 ms
to allow the remainder of the message to be received before
inputting the response packet. Caution - Do not make the
input call until the complete response message has been
received by the 4804 or 4894A or else you can loose part of
the response.

Follow the read back part of the listing to read the Modbus
response. Usethereceive function inthe Main Form to read

back the response message. The receive function usesICS's
ieEnter B function to read in the response message, discards
any excess space characters and returns the response mes-
sage. |If you are using another GPIB input command, use a
termination option that only terminateswhen EOI isasserted.
The Msg_Format flag is set by the user clicking HEX or
Decimal values. Based on the Msg_Format flag setting, call
either the convert_modbus_data to decimal function or the
convert_modbus_data_to_hexidecimal functiontodissemble
the response message into its components and recover the
response data. The GPIB2MOD program displays the com-
pleteresponse, but you can discard any unnecessary informa-
tion.

If theuser'sprogramiswritteninaBasiclanguage, theVisua
Basic statements are easy to convert. If theuser'sprogramis
inC, theVisual Basicexamplewill serveasaguidetothenew
program.

SUMMARY

This application note has described how to drive a Modbus
devicefrom the GPIB bususing |CS'sModel 4894A or 4804
GPIB-to-Seria Interfaces. Watlow's new F4 series of Pro-
cessControllerswereused astheexampledevice. Thewiring
exampl esand samplecodehavebeentested withaWatlow F4
series controller and should be easily adapted to other Mod-
bus devices.

1/00

Main Form cmdSEND_Click listing

Private Sub cmdSend_Click() ‘sends general message
Static data_value!(40)
comdtype% = Val(txtCmdNum.Text) 'command type
Start_reg! = Val(TxtReg.Text) 'starting register
If Len(txtOutput.Text) > 0 Then
Data$ = txtOutput.Text
If InStr(txtOutput, “,”) = 0 Then

4

data_value!(1) = Val(Data$) 'data values
data_value!(2) = END_OF _DATA_VALUES

Else
I=1
Do
L = InStr(Data$, “,”
If L =0 Then

newstr$ = Left$(Data$, (Len(Data$)))

data_value!(I) = Val(newstr$)
Else

newstr$ = Left$(Data$, (L - 1))
data_value!(I) = Val(newstr$)
newdatastr$ = Right$(Data$, (Len(Data$) - L))
Data$ = newdatastr$
End If
I=1+1
Loop UntilL =0

data_value!(I) = END_OF_DATA_VALUES
End If

Else
data_value!(1) =1

data_value!(2) = END_OF DATA_VALUES
End If
OutString$ = build_modbus_message$(comdtype%,
MBDevice%, Start_reg!, data_value!())
L = Len(OutString$)

ioerr% = ieOutputB(CardDev, OutString$, L)

‘output command
ProcessError (ioerr%) 'checks for GPIB command errors

‘readback
Call Tdelay(0.3)
Instring$ = Receive_msg$()
RxLen% = Len(Instring$)
ProcessError (ioerr%)
message$ = Instring$
‘Msg_Format = DECIMAL_DATA_FMT

'flag set by panel control

‘delay for serial data
'input response

Select Case Left$(message$, 3)
Case “Bad”
‘something was wrong with the message data.
response$ = message$
read_data_reg!(1) =-99999
Case Else
response$ = Instring$
Select Case Msg_Format
Case DECIMAL_DATA_FMT

‘convert the modbus response to decimal numbers.
response$=convert_modbus_data_to_decimal$
(MESSAGE_RECEIVED, response$)
Case HEX_DATA_FMT
‘convert the modbus response to hexadecimal numbers.
response$ = convert_modbus_data_to_hex$
(MESSAGE_RECEIVED, response$)
End Select
txtResults. Text = Explaination$ & NL & “ “ & response$
End Select

txtDataEntry.Visible = False
End Sub

Figure7 Main Form cmdSEND_Click listing

ICS Electronics

5

7034 Commerce Circle, Pleasanton, CA 94588

Phone: (925) 416-1000 Fax: (925) 416-0105

1/00

