
1

ICS

AB48-32

APPLICATION
BULLETIN

INTRODUCTION

In many application, it is often helpful if the user's program
can be notified when an even has occurred. WIN32 GPIB
applications can be programmed to receive notification of
asynchronous events by using the ibnotify function. The
purpose of this application note is to demonstrate how to use
the ibnotify function in a WIN32 application.

IBNOTIFY

ibnotify is a function that can be invoked when any of
its enabled mask bits occurs. For device-level calls, valid
mask bits are I/O Complete (CMPL), Timeout (TIMO), END
or EOS detected (END) and Service Request detected (RQS).
Refer to ICS's 488.2 Manual for a complete description of the
ibnotify function and the board-level mask bits.

ibnotify can be called to inform the application when one
of these events occurs. A typical application might want to
know when a particular device is requesting service. When
the device requests service, ibnotify invokes a separate
(Callback) routine to service the call.

Note: These Callback routines operate in a separate program
thread and have access to the global variables. If other GPIB
commands may be executed while ibnotify is active, then
you should use the separate thread functions. In addition use
program semaphores to protect other shared program variables.
See the ibnotify description in the 488.2 Manual.

EXAMPLE

The attached program illustrates using the ibnotify com-
mand to notify the application when a device receives a serial
message. The example setup is shown in Figure 1. The GPIB
Controller is attached to an ICS Model 4896 GPIB to Quad

ASYNCHRONOUS EVENT NOTIFICATION WITH ICS's
USB to GPIB CONTROLLERS

Serial Interface. The 4896 has four serial channels that operate
with RS-232 or RS-422/RS-485 serial signals. ibnotify is
used to set a data flag when Channel one of the 4896 receives
serial messages.

488-USB
Controller

4896 Serial I/O
Portable PC

Figure 1 Example Setup

The 4896's four serial channels are addressed with secondary
addresses 1, 2, 3 and 4. These serial channels transparently
pass data between the GPIB bus and the serial interfaces.
The control functions for the data channels are addresses at
secondary addresses 11, 12, 13 and 14. These control chan-
nels are 488.2 compliant interfaces and use SCPI commands
to set the serial parameters.

The 4896's Status Reporting Structure is shown in Figure 2.
The 4896 has a complete 488.2 Status Reporting Structure
that is augmented with the Questionable Register array and
Operation Arrays. The Questionable Condition register reports
the current condition of the receive buffers and messages. The
Questionable Event register bits are edge sensitive and set when
a Condition bit becomes true. If the corresponding Question-
able Enable bit is true, then a summary bit is generated which
cascades down to bit 3 in the Status Byte register. If the cor-
responding Status Register Enable bit is set, then the 4896 will
generate a Service Request when it receives a message. The
example program uses this mechanism to generate a Service

ICS
ELECTRONICSICS

division of Systems West Inc.

Rev 9-23-02

2 3

Read by Serial Poll

N
ot

U
se

d
Questionable �
Condition �
Register
Questionable �
Event �
Register�
�

Questionable Enable Register

+

C
h

4
C

h
3

C
h

2
C

h
1

C
h

2

N
ot U
se

d

C
h

4
C

h
3

Operation�
Condition�
Register

�
Operation�
Event�
Register

RQS

MSS

Service
Request
Generation

{

{
Read by *STB?

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 Service Request
Enable Register
*SRE<>, *SRE?

ESB MAV

Status Byte Register

+

Standard
Event Status

Register

Queue
Not-Empty

Output Queue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Lo
gi

ca
l O

R

Po
w

er
 O

n

N
ot

 U
se

d
C

om
m

an
d

Er
ro

r
Ex

ec
ut

io
n

Er
ro

r
Se

ria
l E

rro
r

Q
ue

ry
 E

rro
r

N
ot

 U
se

d
O

pe
ra

tio
n

C
om

pl
et

e

*ESR?

Standard
Event Status

Enable
Register

*ESE <NRf>
*ESE?

C
h

1

TX buffer�
full

TX buffer�
empty

15 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 10 9 8 7 6 5 4 3 2 1 0

&
& &

&

&
&

&

&

&
&

& &

C
h

4
C

h
3

C
h

2
C

h
1

C
h

4
C

h
3

C
h

2
C

h
1

C
h

4
C

h
3

C
h

2
C

h
1

RX buffer�
full

RX buffer�
not empty

RX message�
received

&
&

&
&

&
&

&

& &
&

&
&

&
&

&

÷

÷

÷
Operation Enable Register

15 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 10 9 8 7 6 5 4 3 2 1 0

15 12 11 10 9 8 7 6 5 4 3 2 1 0

&
& &

&

&
&

&

&

&
&

& &

÷

÷

÷

C
h

2

C
h

4
C

h
3

C
h

1

Break�
Detected�

�

+

Figure 2 4896's Status reporting Structure

2 3

Request each time the 4896 receives a serial massage.

PROGRAM

The listing for the example program is shown in Figure 3. The
complete program and supporting files can be downloaded
from ICS's website.

The first section defines the commands used to initialize the
4896. Note that the Questionable Register array is enabled
to report received messages for channel one. The message
terminator is set to carriage return (decimal 13).

The next section uses ibfind to obtain the board handle.
ibdev is then used to get the handles for the 4896's Control
and Data channels. The 4896's IDN message is queried and
printed on the screen. A Device Clear and a serial poll clear
out any left over data in the serial channels and eliminate any
4896 SRQs.

The writes in the following section output the setup com-
mands to the 4896 and clears the Event Status Register. The
last line of this section is a call to the ibnotify function
so that it will return the data flag when a SRQ is generated
by the 4896.

The program then cycles through the two if statements until
terminated by the user from the keyboard.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

When the 4896 receives a serial message terminated with a
carriage return, the MyCallback routine puts the Serial Poll
Response in the return variable. The next time the application
tests the dataflag, it executes the statements in the dataflag if
routine to and read and print the serial message. The state-
ments also query the 4896's Questionable Event Register to
clear it and re serial poll the 4896 to clear its Status Register
to prepare it for the next message.

SUMMARY

This application note has described an ibnotify example
application that reads and prints serial message that are re-
ceived asynchronously. This example uses an ICS Model 4896
GPIB to Quad Serial Interface to receive the serial massage.
A zip file withe the complete ibnotify can be downloaded
from the Application Notes page on ICS Electronics' website
at http://www.icselect.com/.

//
// TEST PROGRAM FOR notify FUNCTION.
// USES ICS 4896 MINI-BOX
// M. FRY 9/12/02
//
#include “stdafx.h”
#include <stdlib.h>
#define _X86_
#include <Windef.h>
#include <Winbase.h>
#include <string.h>
#include <conio.h>
#include “ICSDecl.h”
//
int __stdcall MyCallback(int,int,int,long,void *);
//
int main(int argc, char* argv[]) {
 int intfc,handle_CTL,handle_DATA;
 int dataFlag,QEvent;
 char setup1[] = “SYST:COMM:SER:BAUD 9600”;
 char setup2[] = “*SRE 40”;
 char setup3[] = “STAT:QUES:ENAB 1”;
 char setup4[] = “SYST:COMM:SER:EOM 13”;

Figure 3 Example ibnotify Program

4 5

 char setup5[] = “SYST:COMM:SER:ADD:ENAB 0”;
 char setup6[] = “SYST:COMM:SER:EOI ON”;
 char buf[100];
 char QBuf[10];
 char pollByte;
//
 dataFlag = 0;
 printf(“GPIB notify testing\n”);
 intfc = ibfind(“GPIB0”);
 handle_CTL = ibdev(0,4,107,T3s,1,0);
 handle_DATA = ibdev(0,4,97,T3s,1,0);
 ibwrt(handle_CTL,”*IDN?”,5);
 ibrd(handle_CTL,buf,100);
 buf[ibcnt-1] = 0;
 printf(“\nTEST BOX ID: %s”,buf);
 ibwrt(handle_CTL,”*RST”,4);
 Sleep(500);

// added to clear serial channel, eliminates 4896 hang if data in buffer
 ibclr(handle_DATA);
 Sleep(500);
// eliminates any existing SRQʼs
 ibrsp(handle_DATA, &pollByte);

 ibwrt(handle_CTL,setup1,strlen(setup1));
 printf(“\nSTEP-1”);
 Sleep(500);
 ibwrt(handle_CTL,setup2,strlen(setup2));
 printf(“\nSTEP-2”);
 Sleep(500);
 ibwrt(handle_CTL,setup3,strlen(setup3));
 printf(“\nSTEP-3”);
 Sleep(500);
 ibwrt(handle_CTL,setup4,strlen(setup4));
 printf(“\nSTEP-4”);
 Sleep(500);
 ibwrt(handle_CTL,setup5,strlen(setup5));
 printf(“\nSTEP-5”);
 Sleep(500);
 ibwrt(handle_CTL,setup6,strlen(setup6));
 printf(“\nSTEP-6”);
 Sleep(500);
 ibwrt(handle_CTL,”*CLS”,4);
 Sleep(500);
 ibrsp(handle_CTL,&pollByte);
 ibnotify(handle_CTL,RQS,MyCallback,(void *)&dataFlag);

Figure 3 Example ibnotify Program continued

4 5

 printf(“\r\n\nEnter Serial Message to Test ibnotify: “);
TOP:
 if(kbhit()) {
 if(getchar() == 0x0D) goto TOP;
 if(getchar() == 0x0A) goto TOP;
 if(getchar() == ʻ? ̓) {
 ibrd(handle_DATA,buf,100);
 if(ibsta & ERR) {
 printf(“\nREAD ERROR: %d”,iberr);
 }
 else {
 if(ibcnt > 0) {
 buf[ibcnt-1] = 0;
 printf(“\nINPUT DATA: %s”,buf);
 }
 }
 goto TOP;
 }
 // Enter two spaces and enter, to exit program
 goto STOP;
 }
 if(dataFlag) {
 ibwrt(handle_CTL,”STAT:QUES:EVEN?”,15);
 ibrd(handle_CTL,QBuf,10);
 QEvent = atoi(QBuf);
 printf(“\nQuestionable Events(HEX):%04X”,QEvent);
 ibrd(handle_DATA,buf,100);
 buf[ibcnt-1] = 0;
 printf(“\n%s”,buf);
 dataFlag = 0;
 printf(“\r\n\nEnter Serial Message to Test ibnotify: “);
//
// added, clears up hang up on 4896 status byte register
 ibrsp(handle_DATA, &pollByte); /* Resets the 4896 status reg */
 }
 goto TOP;
STOP:
 return 0;
}
//
// ROUTINE TO HANDLE ibnotify CALLBACK.
//
int __stdcall MyCallback(int Ud, int Ibsta,
 int Iberr, long Ibcntl, void *RefData) {
 char pollByte;
//
 *(int *)RefData = 1;
 ibrsp(Ud,&pollByte); /* ??? */
 return(RQS);
 }

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Figure 3 Example ibnotify Program continued

