
1

APPLICATION
BULLETIN

IC S
ELECTRONIC SIC S

division of Systems West Inc.

AB48-35

INTRODUCTION

As computer systems age and need to be replaced, test engineers
are faced with the task of upgrading the test system and at the same
time trying to save the existing test programs. The cost of the test
programs are often more than the cost of the hardware. Replacing
the test programs is very expensive because the original test engi-
neers are typically gone and new engineers are not familiar with
the test requirements and with the other considerations that were
taken into account in the original program. Also any changes in
the test software may cause the complete test program to have to
be re-validated by the end customer.

This application note deals with two ways to change or update the
GPIB Controller with a minimum of changes to the test program.

GENERAL CONCEPT

Most test programs only use a few GPIB instructions - two or three
instructions to initialize the GPIB Controller and then three or four
other instructions that are repeated throughout the program. This
makes the job of replacing the GPIB Controller instructions fairly
easy.

ICS's GPIB Controllers use a command set that is compatible with
National Instruments' 'ib' and the NI 488.2 command sets. This
gives the user a wide choice of GPIB Controller types and means
that the program will probably never have to be updated again.
While this Application Note deals specifically with the conversion
of a Rocky Mountain Basic Program to ICS's 488.2 Commands,
the concept remains the same for updating test programs written
in other languages.

GLOBAL REPLACEMENT

One way to change GPIB Bus Controllers is to do a global edit
and replace the original commands with the equivalent ICS 488.2
commands for ICS's GPIB Bus Controllers. The 488.2 commands
are recommended over the 'ib' commands because of their ease of
use.

CONVERTING OLDER GPIB PROGRAMS FOR
ICS's GPIB CONTROLLERS

INITIALIZATION

Figure 1 shows a simple Rocky Mountain Basic program. The first
four commands. IOABORT, IOCLEAR, IOTIMEOUT and IOEOI
are used to initialize the GPIB Controller and have to be replaced
to change over to an ICS GPIB Controller. While the initialization
section often gets a major rewrite, it doesn't matter since it is typi-
cally a small part of the test program and does not affect the logic
of the program.

The first step is to replace the original QBSETUP include file with
ICS's GPIB-32.BAS and ICSVB.BAS files. If this program is be-
ing converted into Visual Basic, ICS's GPIB-32.BAS and ICSVB.
BAS would included in the Project and the include statement is
not used.

In the Initialization section SendIFC replaces IOABORT, ibSRE
replaces IOCLEAR and ibTMO replaces IOTIMEOUT. ibSRE
and ibTMO are used here since there are no equivalent 488.2 com-
mands.

The three variables are also modified. ISC& is set to 0 for the first
GPIB Controller. Instead of the 7 used in Rocky Mountain Basic.
Also the 7 is stripped from the device's GPIB addresses. TIMEOUT!
is set equal to T10s for 10 seconds.

The new initialization sequence becomes:

ISC% = 0
ANA%= 16
TIMEOUT = T10s
CALL SendIFC(ISC%)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibSRE(ISC%,1)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibTMO(ISC%, TIMEOUT)
 IF (ibsta% and EERR) Then Call gpiberr
CLS

06-08-04

BODY OF PROGRAM

There are only three more GPIB Commands used in this sample
program, IOREMOTE, IOOUTOUT and IOENTER. In a larger
program there would be many occurrences of these instructions and
possibly a couple of additional instructions like IOSPOLL

IOREMOTE is used to place device ANA% into the remote state.
This command is really unnecessary as the next instruction will
put the device into the remote state when it writes an instruction
out to the device. IOREMOTE can be replaced with EnableRe-
mote. EnableRemote uses a device address list and is coded as:

DIM addrlist%(2)
addrlist%(0) = ANA%
sddrlist%(1) = NOADDR
Call EnableRemote(ISC%, addrlist%())

IOOUTPUT is used to send the string CODE$ to device ANA%.
IOOUTPUT is replaced by Send. The arguments for Send are
Bd%, dev%, string$ and terminator%. Bd% is the same as ISC%
defined above The terminator can be set to linefeed which is the
common terminator for a HP test program. Each IOOUTPUT is
replaced by:

Send(ISC%, ANA%, CODE$, TERM%)

IOENTER is used to read data from device ANA%. The equivalent
488.2 command is Receive. The arguments for Receive are Bd%,
dev%, RCV$ and Terminator%. Again Bd$% is ISC% and equal

to 0. Dev% is ANA%. Each IOENTER is replaced with:

Receive(ISC%, ANA%, RCV$, Term%)

The Global Replacement Method simply replaces these commands
with the above substitutions. Figure 2 shows the example program
converted by the Global replace concept.

REM $INCLUDE: ‘C:\HPIB\QBSETUP’
 ISC& = 7
 ANA& = 716
 TIMEOUT! = 10
 CALL IOABORT(ISC&)
 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
 CALL IOCLEAR(ISC&)
 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
 CALL IOTIMEOUT(ISC&, TIMEOUT!)
 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
 CALL IOEOI(ISC&, 0)
 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
 CLS

 CALL IOREMOTE(ANA&)
 CODE$ = “TALKLIST;”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 CODE$ = “IDN?”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 RCV$ = SPACE$(72)
 ACT% = 0
 MAX% = 72
 CALL IOENTERS(ANA&, RCV$, MAX%, ACT%)
 PRINT “ANA MODEL “; RCV$
 CODE$ = “OPC;PRES;”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 END

Figure 1 Original Rocky Mountain Basic Program

REM $INCLUDE: GPIB-32.BAS and ICSVB.BAS files.
ISC% = 0
ANA%= 16
TIMEOUT = T10s
CALL SendIFC(ISC%)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibSRE(ISC%,1)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibTMO(ISC%, TIMEOUT)
 IF (ibsta% and EERR) Then Call gpiberr
CLS

DIM addrlist%(2)
addrlist%(0) = ANA%
sddrlist%(1) = NOADDR
Call EnableRemote(ISC%, addrlist%())
CODE$ = “TALKLIST;”
Send(ISC%, ANA%, CODE$, TERM%)
CODE$ = “IDN?”
Send(ISC%, ANA%, CODE$, TERM%)
RCV$ = SPACE$(72)
ACT% = 0
MAX% = 72
Receive(ISC%, ANA%, RCV$, Term%)
PRINT “ANA MODEL “; RCV$
CODE$ = “OPC;PRES;”
Send(ISC%, ANA%, CODE$, TERM%)
END

Figure 2 Global Replacement Program Listing

SUBROUTINE METHOD

The Subroutine method differs from the Global Replacement Con-
cept in that it uses the call to the existing GPIB commands as a call
to new subroutines with ICS's equivalent GPIB commands. The
subroutine makes any necessary parameter conversions, calls the
equivalent ICS command and returns any necessary parameters.

The user has to decide how to handle the program initialization.
Is it worth it to make subroutines of the IOABORT, IOCLEAR,
IOTIMEOUT and IOEOI commands for a one time use or just re-
place the commands with a new initialization sequence tailored to
ICS's GPIB Controllers? Probably not. So since the initialization
commands are only called once we will use the same initialization
sequence developed in the Global Replacement Method.

IOREMOTE, IOOUTPUT and IOENTER will be converted in
to subroutines as they represent GPIB commands that would be
repeated many times in a larger program.

IOREMOTE now becomes the name of a new subroutine with the
arguments ANA% and CODE$. The subroutine creates addrlist
and calls the REMOTE command.

IOREMOTE(ANA%)
 DIM addrlist%(2)
 addrlist%(0) = ANA%
 sddrlist%(1) = NOADDR
 Call EnableRemote(ISC%, addrlist%())
RETURN

IOOUTPUTS becomes the name of a new subroutine to send the
CODE$ string to device ANA%. Send has four arguments: BD%,
DEV%, String$ and TERM%. BD% becomes ISC% and DEV%
becomes ANA%. TERM% is set to NLend% for a linefeed. The
subroutine then calls Send. NLend% and ISC% are global vari-
ables.

IOOUTPUTS(ANA%, CODE$, LEN)
 Send(ISC%, ANA%, CODE$, NLend%)
RETURN

IOINPUTs becomes the name of a new subroutine to read a string
from device ANA%. Receive has four arguments: BD%, DEV%,
InString$ and TERMINATION%. BD% becomes ISC% and DEV%
becomes ANA%. TERMIMATION% is set to linefeed. The sub-
routine then calls Receive. ISC% is a global variable.

IOENTERS(ANA%, RCV$, MAX%, ACT%)
 Term% = 10
 Receive(ISC%, ANA%, RCV$, Term%)
RETURN

Figure 3 shows how the final program looks.

SUMMARY

This Application Note has shown two ways a test engineer can up-
date an older test program to use a modern GPIB Controller without
rewriting the program or without disturbing the program's flow. The
Subroutine Method is the preferred method since it involves less
changes to the original program.

REM $INCLUDE: GPIB-32.BAS and ICSVB.BAS files.
ISC% = 0
ANA%= 16
TIMEOUT = T10s
CALL SendIFC(ISC%)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibSRE(ISC%,1)
 IF (ibsta% and EERR) Then Call gpiberr
CALL ibTMO(ISC%, TIMEOUT)
 IF (ibsta% and EERR) Then Call gpiberr
CLS

 CALL IOREMOTE(ANA&)
 CODE$ = “TALKLIST;”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 CODE$ = “IDN?”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 RCV$ = SPACE$(72)
 ACT% = 0
 MAX% = 72
 CALL IOENTERS(ANA&, RCV$, MAX%, ACT%)
 PRINT “ANA MODEL “; RCV$
 CODE$ = “OPC;PRES;”
 CALL IOOUTPUTS(ANA&, CODE$, LEN(CODE$))
 END

IOREMOTE(ANA%)
 DIM addrlist%(2)
 addrlist%(0) = ANA%
 sddrlist%(1) = NOADDR
 Call EnableRemote(ISC%, addrlist%())
RETURN

IOOUTPUTS(ANA%, CODE$, LEN)
 Send(ISC%, ANA%, CODE$, NLend%)
RETURN

IOENTERS(ANA%, RCV$, MAX%, ACT%)
 Term% = 10
 Receive(ISC%, ANA%, RCV$, Term%)
RETURN

Figure 3 Subroutine Method Program Listing

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

