
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB48-36

INTRODUCTION

The normal practice in a GPIB test program is to read data from
an instrument with a single read command. However in some
cases, the user may want to read only a portion of the data and
then go back and read the remainder of the data or just read
another chunk of the data. Done incorrectly this will lead to lost
data, test program hang ups and EABO timeout errors. This Ap-
plication Note describes the correct way to make partial reads
with ICS's 488-USB GPIB Controller and includes a sample C
language program.

GENERAL CONCEPT

GPIB instruments are designed to stop outputting data when
the GPIB Bus Controller asserts ATN or stops the handshake
by asserting NRFD. If the instrument is unaddressed and then
readdressed, its internal state machine may be programmed to
discard the unsent portion of its response data. Alternately the
instrument may be come confused when readdressed and hang
up the bus.

When a standard read type command is used to read twice from
the same device, it will unaddress the device and then readdress
it as a talker. Depending upon the instrument's design, it may
reply with new data, may discard any remaining data or may
cause a bus hang up.

There are two possible solutions to this problem: Solution #1 is
to use a read command that does not readdress the instrument at
the start of the second read. Solution #2 is to disable readdress-
ing so that the standard Read command will not unaddress and
readdress the instrument.

EXECUTING PARTIAL READS ON ONE DATA STRING

PARTIAL READ COMMAND

A command like RcvRespMsg reads data from a previously ad-
dress talker. If used in a loop, this command can be programmed
to read as little as one byte of data each time it is called. Figure
1 on the next page is a listing of a C Language program that
uses RcvRespMsg to read an IDN response in one byte chunks.
Other GPIB Controllers will have a similar non-readdressing
read command.

When doing partial reads, the use must be sure that he or she
has satisfied the instrument by either reading all of the data or
clearing out the remaining data. Some GPIB instruments will
clear their buffers when sent the GPIB Device Clear command.
Other GPIB instruments may force you to read all of the data
to prevent a hang up. Leaving an unread portion of the data
response in the instrument may also cause the instrument to
generate a Query Error.

DISABLING READDRESSING

Some GPIB Controllers allow you to disable readdressing on
a read or write command. However ICS's Model 488-USB
does not disable readdressing at this time. If readdressing was
disabled, standard reads could fail. If the user attempts to dis-
able readdressing with the 488-USB, no error is produced but
readdressing is not disabled.

SUMMARY

This Application Note has shown how a user can safely conduct
partial reads from a GPIB Instrument with ICS's 488-USB GPIB
Controller. Figure 1 on the next page is C language example
of 1 byte long partial reads. Figure 1 can be used directly with
ICS's and any other GPIB Controllers that support the National
Instrument 'ib' and 488.2 command sets.

06-26-04

Figure 1 C Language Partial Read Example Program

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <process.h>
#include <winsock.h>

#include “..\ICSDecl.h”

main ()

 {
 int i, result;
 char c, buf[4096];

 // GPIB init sequence
 SendIFC (0);
 ibsre (0, 1);

 // Send an *IDN? query string to device-4
 Send (0, 4, “*IDN?”, 5, NLend);

 if (ibsta & ERR)
 {
 printf (“Error following the *IDN? send\n”);
 return (1);
 }

 // Unlisten all, untalk all, 0 listen, 4 talk
 SendCmds (0, “?_ D”, 4);

 if (ibsta & ERR)
 {
 printf (“Error after the SendCmds\n”);
 return (1);
 }

 // Pre-fill the buffer with NULL̓ s so it becomes a legal C string
 // after reading the data.
 memset (buf, ʻ\0ʼ, sizeof(buf));

 // Read the *IDN? query response
 for (i= 0; !(ibsta & ERR) && !(ibsta & END);)
 {
 RcvRespMsg (0, &c, 1, STOPend);

 if (ibsta & ERR)
 {
 printf (“Error received during RcvRespMsg sequence\n”);
 printf (“ ibsta = 0x%04X\n”, ibsta);
 printf (“ iberr = %d\n”, iberr);

 break;
 }

 if (isprint (c))
 buf[i++] = c;
 }

 result = ibsta;

 printf (“Final result after the read:\n”);
 printf (“ string: \”%s\”\n”, buf);
 printf (“ count = %d bytes\n”, strlen(buf));
 printf (“ ibsta = 0x%04X\n”, result);

 return (0);
 }

