
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB48-37

INTRODUCTION

The normal practice in a GPIB test program is to write or read
short data strings to or from an instrument. However in some
cases, the user may need to transfer large blocks of data to the
instrument. Examples are Waveform Generators which need
many bytes of instructions to specify the waveforms the user
wants to generate or Data Acquisition Systems which collect large
amounts of data. This Application Note describes the correct
way to make file transfers with ICS's 488.2 GPIB Controllers
and includes a sample Visual Basic language program.

READING DATA INTO A FILE

Data can be easily read into a file by doing the following: First
create a blank file and save it in the directory with your program.
This simplifies the filename in the ibrdf command. You can cre-
ate the file ahead of time with Wordpad or Notepad or create it
in your program. Save the file as a .txt. file. Then use an ibrdf
command to read the data from the instrument into the file.

An example instruction is:

 ibrdf(ud%, filename$)

where ud% is the device handle and filename$ is the name of
the file that will be receiving the data. If the file is in a different
directory, filename$ will need to show the full path to the file.
i.e. "c:\new_directory\read_file.txt"

Follow ibrdf with a error checking routine that checks ibsta for
errors to be sure that the file transfer was done correctly. If ibsta
is < 0x8000 hex then the file transfer was okay. The variable
ibcnt will contain the number of bytes transferred to your file.

File Transfers over the GPIB Bus

WRITING FILE DATA TO A DEVICE

File data can be easily transferred to a device by doing the fol-
lowing: Create a file with the desired information. You can
manually create the file with Wordpad or do it in your program.
Save the file as a .txt file. Once the file is created and saved, use
an ibwrtf instruction to transfer the file data to the instrument.
EOI will be asserted by the GPIB Controller when the last byte
of data is transferred to the device.

An example instruction is:

 ibwrtf(ud%, filename$)

where ud% is the device handle and filename$ is the name of
the file that contains the data to be transferred to the instrument.
If the file is in a different directory, filename$ will need to show
the full path to the file. i.e. "c:\new_directory\read_file.txt"

Follow ibwrtf with a error checking routine that checks ibsta for
errors to be sure that the file transfer was done correctly. If ibsta
is < 0x8000 hex then the file transfer was okay. The variable ibcnt
will contain the number of bytes transferred to the device.

EXAMPLE VISUAL BASIC PROGRAM

VB_File_Xfr_Demo is a Visual Basic sample program that shows
how to do simple file transfers. The VB_File_Xfr_Demo program
is a simplified version of ICS's GPIBkybd program and shows a
user how to do a number of basic tasks that he or she is likely to
encounter in a real program. VB_File_Xfr_Demo includes two
new controls for transferring files to or from a GPIB device.

In the VB_File_Xfr_Demo program, the user enters his filename
in the filename text box and presses the Read File or Write File
button. The files have to be created ahead of time when using
the VB_File_Xfr_Demo program as the demo program does not

08-18-04

2

Figure 1 Write File Example

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

have a file creating capability. If the file is in the same directory
as the program, the user enters just the file name with its exten-
sion. If the file is located in a different directory, the user must
enter the full filename.

The VB_File_Xfr_Demo.zip file from ICS's website, contains all
of the Visual Basic source file, an executable file, the VB libraries
and two sample files, testrd.txt and testwrt.txt. Download and
expand the zipped files into a temporary directory. Double-click
on VB_File_Xfr_Demo.exe to run the demo program. If you do
not have Visual Basic or Visual Studio 6 installed, you will need
to download the VB6 Runtime files from ICS's website before you
run the program. (http://www.icselect.com/prgupdates.html)

Sample file testwrt.txt contains the IEEE_488.2 IDN query. If
testwrt.txt is written to a 488.2 compatible device, the device will
respond by writing its IDN message into the testrd.txt file. To do
this, connect your GPIB Controller to an IEEE-488.2 compatible
Instrument and run the VB_File_Xfr_Demo.exe program. Be
sure the device's GPIB address is in the Device Address window
at the top of the VB Form. Verify device communication by
doing an *ESR? or *IDN? query and reading back the correct
response. Then type testwrt.txt into the Write File test box and
click the Write file button. Next type testrd.txt into the Read File
text box and click the Read File button. Use Wordpad, Notepad
or any text editor to view the testrd file.

Use the cmdWrtf and cmdRdf subroutines in the VB_File_
Xfr_Demo program as starting points for your own file transfer
program. These two subroutines are listed on the right in Figures
1 and 2.

SUMMARY

This Application Note has shown how a user can do file transfers
to and from a GPIB device. Figure 1 on the right is a Visual
Basic language example of a file transfer to an instrument.
Figure 2 is a Visual Basic language example of a file transfer
from an instrument. Both examples and the VB_File_Xfr_Demo
program can be used directly with ICS's and any other GPIB
Controllers that support the National Instrument 'ib' and 488.2
command sets.

Private Sub cmdWrtf_Click()
 txtError.Text = “”
 txtError.Visible = False
 If txtWrtFilename.Text = “” Then
 txtError.Text = “Missing source filename”
 txtError.Visible = True
 Beep
 Else
 wfilename$ = txtWrtFilename.Text
 Call ibwrtf(ud%, wfilename$)
 If (ibsta% And EERR) Then
 Call gpiberr(“ibwrtf Error”)
 txtError.Text = RetMsg$
 txtError.Visible = True
 Beep
 Else
 txtResults.Text = Str$(ibcntl) & “ bytes written to device
“ & Str$(Device)
 End If
 End If
End Sub

Private Sub cmdRdf_Click()
 txtError.Text = “”
 txtError.Visible = False
 If txtRdFilename.Text = “” Then
 txtError.Text = “Missing destination filename”
 txtError.Visible = True
 Beep
 Else
 rfilename$ = txtRdFilename.Text
 Call ibrdf(ud%, rfilename$)
 If (ibsta% And EERR) Then
 Call gpiberr(“ibrdf Error”)
 txtError.Text = RetMsg$
 txtError.Visible = True
 Beep
 Else
 txtResults.Text = Str$(ibcntl) & “ bytes read from de-
vice “ & Str$(Device)
 End If
 End If
End Sub

Figure 2 Read File Example

