
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB48-39

INTRODUCTION

This Application Bulletin shows how to create a Visual
Basic.NET program for GPIB Controllers that utilize an
industry standard GPIB-32.DLL driver library. This Demo
Program was developed with Microsoft's Visual Studio
2005 and ICS Electronics GPIB-32.DLL. Earlier versions
of Microsoft's .NET development systems are not compat-
ible with ICS's included library fi les. While this program
has only been tested with ICS's GPIB Controllers, there is
no reason why it should not work on other GPIB Control-
lers that include a GPIB-32.DLL Driver Library.

GENERAL CONCEPTS

The Visual Basic.NET Demo Program was written as an
interactive control program that the user can easily adapt
to his or her use. The Demo Program has just the one
form shown in the fi gure on the right. The form has text
windows where the user can set the address of the GPIB
device, enter a command string to send to the device and
text window to display device responses. Other common
GPIB functions like Send IFC, Device Clear, Serial Poll and
Trigger are controlled by separate buttons. The Demo Program also
includes the IEEE-488.2 FindLstn routine and buttons for sending
the *RST and *CLS commands to the GPIB device.

REQUIREMENTS

The executable version of the Demo Program can be run on any
computer that has Microsoft's Visual Studio 2005 or Microsoft's
.NET Framework, version 2.0 or later, installed on it. Visual Studio
2005 is required to develop your own Visual Basic.NET program.
Any new program must include ICS's GPIB-32.VB and ICSVB.VB
fi les to link to the GPIB-32.DLL Driver Library.

RUNNING THE DEMO PROGRAM

When the Demo Program loads, only the Initialize button is enabled.
This forces the user to initialize the GPIB Controller and the GPIB

VB.NET Programming Example for GPIB Controllers

05-02-07

Visual Basic.NET Demo Main Form

bus. Once the GPIB Controller is initialized, the remaining controls
on the form are enabled.

Although the Device Address is preset to address 4, it can be changed
manually or set automatically by running the FindLstn routine. The
Demo program is designed to only control one GPIB device at a
time. If you have multiple devices you will have to enter the GPIB
address of the desired device into the Device Address window and
press Set to select the device.

Device commands and text data can be entered into the Device
command window. The Demo program will append a linefeed to
the command strings and output them to the GPIB device when you
press the Send button. The Demo program will automatically read
the device responses if the command string was an IEEE-488.2 or
SCPI query. You can manually read the device response by pressing
the Read Device response button.

2

DEMO PROGRAM CODE

The complete Demo Program can be downloaded as a ZIP fi le from
ICS's website. The source for the Demo Program is contained in
the VB_demo.vb fi le which can be opened in Visual Studio or any
text editor.

Visual Basic.NET is more rigorous that the older Visual Basic 6
because it requires that you preface all references to the library with
a class name. However, it also provides automatic indenting and
error checking as you write your program that is a big help when
you are writing large functions.

The Form1 Load function only initializes a few variables and then
disables all functions except Initialize.

The Initialize function outputs an IFC to clear the GPIB bus, gets
the Controller's GPIB address, asserts REN and sets the timeout to
3 seconds. Ibsta is checked for an error after each GPIB call. All
GPIB programs should explicitly initialize the GPIB Controller and
the GPIB bus as a matter of good programming practise.

The cmdSet function is more complicated in the Demo Program
than you need in a real program because of checks to verify that
the user did not enter the GPIB Controller's address and to handle
both primary and secondary GPIB addresses. cmdSet also checks
for presence of a GPIB device at the selected address. If you use
fi xed GPIB addresses, you can assign a GPIB address to a descrip-
tive variable, e.g. dvm = 04

The 488.1 commands are done by calling the appropriate function
from the GPIB-32.VB library. Note that some instruments that use
SCPI commands need to be enabled before they will respond to a
Trigger command.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

The cmdFindLstn function is the most complicated function and is
presented in the Demo Program because it is very useful as a way to
verify that all of the GPIB devices in your test system are present.
The Demo Program creates a list of all possible GPIB addresses to
test before calling FindLstn. Once you have the Device List, you
can use an *IDN? query to create a table of GPIB devices vs their
addresses. You can also verify that all of the GPIB devices are
attached and are set to their correct GPIB addresses. Very helpful
for eliminating problems when equipment has been taken away for
calibration or returned with the wrong GPIB address.

The cmdSend function sets the desired termination condition and
then calls the 488.2 Send function to output the command string. If
the command string was a query (contains a ?) and if AutoQuery is
selected, cmdRead is called. cmdRead inputs the device response
string and places it in the txtResults text box.

SUMMARY

This application note has described a Visual Basic.NET program
that demonstrates how to use the most common GPIB commands
These commands are adequate to write most applications. The user
should be able to use the Demo Program as a framework to build a
complete test application.

HINT

When writing a test program, it is often handy to create a subroutine
that combines cmdSend and cmdReceive as a single subroutine
to reduce your coding effort. The subroutine should output the
command string, check for a question mark, and if one is present
read the device response. It can do any necessary string cleanup
and return the cleaned response string to the calling program. An
example of its use is:

CmdStr$ = "*ESR?"
Call Sout(dvm, Cmdstr$)
If Rdg$ <> 0 then.....

