
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB48-42

INTRODUCTION

This Application Bulletin shows how to create a Visual
Basic.NET program with fi le handling capability for GPIB
Controllers that utilize an industry standard GPIB-32.DLL
driver library. The user can take the different pieces of
the FileDemo program and copy them into his program.
This FileDemo Program was developed with Microsoft's
Visual Studio 2005 and ICS Electronics GPIB-32.DLL.
Note that earlier versions of Microsoft's .NET develop-
ment systems are not compatible with ICS's included
library fi les. While this program has only been tested
with ICS's GPIB Controllers, there is no reason why it
should not work on other GPIB Controllers that include
a GPIB-32.DLL Driver Library.

GENERAL CONCEPTS

This program builds on the basic VB.NET Demo program
described in Application Bulletin AB48-39 by adding fi le
handling capabilities to the main form. The Visual Basic.
NET FileDemo Program was written as an interactive
control program that the user can easily adapt to his or
her use. The FileDemo Program has just the one form
shown in the fi gure on the right.

The original Demo program form has text windows where the user
can set the address of the GPIB device, enter a command string to
send to the device, and to display device responses. Other common
GPIB functions like Send IFC, Device Clear, Serial Poll and Trigger
are controlled by separate buttons. The FileDemo Program also
includes the IEEE-488.2 FindLstn routine and buttons for sending
the *RST and *CLS commands to the GPIB device.

The new File Controls are located below the Device Response frame
and let a user create or open a text fi le, append data lines to the fi le
and close the fi le. Collecting data usually requires the user to issue
a command to the GPIB device, read data from the device and then
write it to the fi le. The Start Record and Stop buttons automate this
process by repeating it on a user set time interval.

VB.NET Programming Example for GPIB Controllers
with File Handling Functions

09-26-2009

Visual Basic.NET FileDemo Main Form

The Device Command window was changed to a combo box with
a pulldown arrow. During the Form load time, the box is preloaded
with three IEEE_488.2 Common Commands to reduce the typing load
on the user. The FindLstn function was added to the initialization
routine to make the program work easier with the user's devices.

REQUIREMENTS

The executable version of the FileDemo Program can be run on any
computer that has Microsoft's Visual Studio 2005 or Microsoft's
.NET Framework, version 2.0 or later, installed on it. Visual Studio
2005 or 2008 is required to develop your own Visual Basic.NET
program. Any new program must include ICS's GPIB-32.VB and
ICSVB.VB fi les to link to the GPIB-32.DLL Driver Library.

2

RUNNING THE DEMO PROGRAM

When the FileDemo Program loads, only the Initialize button is
enabled. This forces the user to initialize the GPIB Controller and
the GPIB bus. The initialization routine also fi nds all of the GPIB
devices on the GPIB bus and sets the Device address window to
the fi rst device found. Once the GPIB Controller is initialized, the
remaining controls on the form are enabled. The GPIB Controler
must be initialized in your program for correct operation.

The FileDemo program is designed to only control one GPIB device
at a time. The address of the current device being controlled is shown
in the Device Address window. The Device Address is set to the
lowest GPIB address found on the GPIB bus during initialization. If
you have multiple devices, you will have to enter the GPIB address
of the device you want to control into the Device Address window
and press Set to select a different device.

Device commands and text data can be entered into the Device
command window. The FileDemo program will append a linefeed
to the command strings and output them to the GPIB device when
you press the Send button. The FileDemo program will automati-
cally read the device responses if the command string contains a '?'
character and if the Auto Query box is checked. You can manually
read the device response at any time by pressing the Read Device
response button.

GPIB commands (IEEE-488.1 multiline commands) such as GET
or Device Clear aer not ASCII character commands and cannot
be entered into the Device Command window. Instead they are
sent to the device by clicking on one of the buttons in the 488.1
Command frame. The 488.2 Commands frame includes the 488.2
FindLstn protocol and two buttons for sending the *RST and *CLS
commands. These two commands could have been included in the
Device Command combo box pulldown command list.

DEMO PROGRAM CODE

The complete FileDemo Program can be downloaded as a ZIP fi le
from ICS's website. The source for the FileDemo Program is con-
tained in the VB_FileDemo.vb fi le which can be opened in Visual
Studio or in any text editor.

Visual Basic.NET is more rigorous that the older Visual Basic 6
because it requires that you preface all references to the library with
a class name. However, it also provides automatic indenting and
error checking as you write your program that is a big help when
you are writing large functions.

The Form1 Load function only initializes a few variables and then
disables all controls except Initialize and Exit. Exit must never be
disabled.

The Initialize function outputs an IFC to clear the GPIB bus, gets
the Controller's GPIB address, asserts REN, sets the timeout to 3
seconds and calls the FindLstn function to set the Device Address.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Ibsta is checked for an error after each GPIB call. All GPIB programs
should explicitly initialize the GPIB Controller and the GPIB bus
as a matter of good programming practise.

The cmdSet function is more complicated in the FileDemo Program
than you need in a real program because of checks to verify that
the user did not enter the GPIB Controller's address and to handle
both primary and secondary GPIB addresses. cmdSet also checks
for presence of a GPIB device at the selected address when the Set
button is clicked. If you use fi xed GPIB addresses, you can assign
a GPIB address to a descriptive variable, e.g. dvm = 04 at the begin-
ning of your program.

The 488.1 commands are done by calling the appropriate function
from the GPIB-32.VB library. Note that some instruments that use
SCPI commands need to be enabled before they will respond to a
Trigger command.

The cmdFindLstn function is the most complicated function and is
included in the FileDemo Program because it is very useful as a way
to verify that all of the GPIB devices in your test system are present.
The FileDemo Program creates a list of all possible GPIB addresses
to test before calling FindLstn and returns a list of all active devices
on the GPIB bus. Once you have the Active Device List, you can
use an *IDN? query to create a table of GPIB devices vs their ad-
dresses. You can also verify that all of the GPIB devices that you
expect are connected and are set to their correct GPIB addresses.
This is very helpful for eliminating problems when equipment has
been taken away for calibration, not turned on or returned with the
wrong GPIB address.

The cmdSend function sets the desired termination condition and
then calls the 488.2 Send function to output the command string. If
the command string was a query (contains a '?') and if AutoQuery is
selected, cmdRead is called. cmdRead inputs the device response
string and places it in the txtResults text box.

The File Handling controls let the user enter a fi le name (fi lename.txtThe File Handling controls let the user enter a fi le name (fi lename.txtThe File Handling controls let the user enter a fi le name ()
into the File Name Window. cmdOpen opens the fi le and the .NET
streamwriter function (sw) for appending lines to it. If the fi le is not
found in the current directory, a new one is created. cmdWrtLine
simply writes the current contents of the Device Response window
as a new line to the fi le. cmdClose closes the streamwriter function
and clears the FileOpenFlg. cmdExit also checks the FileOpenFlg
and closes the fi le if it is still open.

The Start Record and Stop buttons automate the recording process
by invoking the .NET Timer function. A .NET Timer is added to the
form as Timer1. When Timer1 runs, it checks the RecordFlg when
the time interval has expired. If the fl ag is set, it then checks the
ckSendCmd checkbox to see if it should send the command in the
Device Command window to the GPIB device. (Note that this will
not read data if the Device Command does not contain a '?' character
as it depends upon the AutoQuery function to call cmdRead). If
the ckSendCmd checkbox is not checked, the Timer1 routine just
reads data from the device. The data is then written to the fi le and
the count in the RecordCnt window is incremented.

3

cmdStartRecord checks to see it the Time Delay window value is
valid. If the value is > 100 ms, cmdStartRecord sets the Timer1
interval to the Time Delay window value, enables the Timer, sets
the RecordFlg, enables the Stop button and disables the Start Record
button. This gives the user a visible indication that the recording
process is enabled. cmdStopRecord resets the RecordFlg, enables
the Start Record button and disables the Stop button.

SUMMARY

This application note has described a Visual Basic.NET program
that demonstrates how to use the most common GPIB commands,
how to open a fi le and how to save the test data to the fi le. The user
can build on this example by adding insrument setup commands
and expand the recorded data. Multiple data items can be written
on the same line as long as they are separated by a comma or a tab
for easy conversion into an Excel fi le. The user should be able to
use the FileDemo Program as a framework to build a complete test
application.

PROGRMMING HINT

When writing a test program, it is often handy to create a subroutine
that combines cmdSend and cmdReceive as a single subroutine to
reduce your coding effort. The subroutine should output the com-
mand string, check for a question mark, and if one is present read
the device response. It also can do any necessary string cleanup
such as removing trailing spaces and linefeeds and return the cleaned
response string to the calling program. An example of its use is:

CmdStr$ = "*ESR?"
Call Sout(dvm, Cmdstr$)
If Val (Rdg$) <> 0 then.....

Otherwise this would be:

CmdStr$ = "*ESR?"
eotmode = GPIB32Funcs.NLend
Call Send(Bd, dvm, CmdStr$, eotmode)
If (GPIB32Funcs.ibsta And GPIB32Funcs.EERR) Then
 Call gpiberr(“Send error”)
 txtError.Text = RetMsg
 txtError.Visible = True
End If

Rdg$ = Space (80)
Call Receive(Bd, dvm, Rdg$, StopEnd)
If (GPIB32Funcs.ibsta And GPIB32Funcs.EERR) Then
 Call gpiberr(“Receive Error”)
 txtError.Text = RetMsg
 txtError.Visible = True
Else
 txtError.Visible = False
 txtResults.Text = RTrim(Instring)
 Rdg$ = RTrim(Instring)
End If

If Val(Rdg$) <> 0 then.....

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

