
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-11

INTRODUCTION

Mention the VXI-11 Specifi cation and you will get a lot of blank looks
since the VXI-11 Specifi cation is not as well known as IEEE-488
Standard or SCPI. A lot of engineers think that the VXI-11 Speci-
fi cation deals exclusively with VXIbus Systems which is not true.
Because of the increasing use of instruments with LAN (Ethernet)
interfaces, knowledge about the VXI-11 Communication Protocol
is becoming more important. This Application Note describes the
specifi cation and shows the user how to use the VXI-11 protocol
to control instruments.

THE VXI-11 SPECIFICATION

The VXI-11 Specifi cation was part of a suite of specifi cations de-
veloped in the early 1990s when the VXIbus concept was created.
VXI-11 describes how instruments or other devices can be connected
to industry-standard TCP/IP networks. The communications and
programming paradigms supported by the VXI-11 specifi cation
are similar in nature to the techniques supported by IEEE-488.1
and IEEE 488.2. The protocol described allows ASCII-based com-
munications to take place between a controller and a device over
a computer network.

The VXI-11 Specifi cation has the following objectives:
1. To allow ASCII messages, including IEEE 488.2 messages, and

IEEE 488.1 instrument control messages to be passed between
a controller and a device over a TCP/IP network.

2. To defi ne an instrument protocol which can be used for this
controller/device communication over a TCP/IP network.

3. To enable the interconnection of independently manufactured
apparatus into a single functional system.

4. To provide a mechanism to extend the protocol.
5. To defi ne an instrument protocol which can support diverse

application interfaces.
6. To allow for other networking protocols as the functionality of

devices and controllers dictate, such as NFS or telnet.

The VXI-11 Specifi cation has three sub-sections:
VXI-11.1 which deals with connecting VXIbus devices to a network

and is not considered any further by this Application Note.

VXI-11 TUTORIAL
and RPC Programming Guide

VXI-11.2 deals with connecting GPIB instruments to a network
though a Gateway like ICS's 8065 or Agilent's E5810A Ether-
net-to-GPIB Controller.

VXI-11.3 deals with connecting IEEE-488.2 instruments with Eth-
ernet interfaces directly to a network. A couple of examples are
ICS's 8064 Relay Interface or 8099 Modbus RTU Controller.

The VXI-11.2 and VXI-11.3 sub-sections are the primary focus of
this Application Note.

NETWORK INSTRUMENT PROTOCOL

In order to allow ASCII messages and IEEE-488.1 instrument control
messages to pass over a TCP Network, the VXI-11 Specifi cation
created the Instrument Messages listed below in Table 1. These mes-
sages are based on the ONC Remote Procedure Call (RPC) model.
This model allows an application (typically called the client) to call
procedures in a remote application or device (the server) as if the
remote procedures were being executed locally. The Instrument
Messages will be familiar to anyone who has worked with GPIB
instruments. (See ICS Application Bulletin AB48-11)

Table 1 VXI-11 Instrument Messages

Message Channel Description
create_link core opens a link to a device
device_write core device receives a message
device_read core device returns a result
device_readstb core device returns its status byte
device_trigger core device executes a trigger
device_clear core device clears itself
device_remote core device disables its front panel
device_local core device enables its front panel
device_lock core device is locked
device_unlock core device is unlocked
create_intr_chan core device creates interrupt channel
destroy_intr_chan core device destroys interrupt channel
device_enable_srq core device enables/disables sending of
 service requests
device_docmd core device executes a command
destroy_link core closes a link to a device
device_abort abort device aborts an in-progress call
device_intr_srq interrupt used by device to send a service request

08-01-10

2

CHANNELS AND LINKS

Figure 1 shows the basic channel connection concept. A channel is
a connection from an instrument controller (client) to an instrument
device (server). The Core channel is the main channel for commu-
nicating with a VXI-11.2 Gateway or a VXI-11.3 Instrument. The
Core channel is used for all RPCs except for aborts and interrupts

Core (write, read)

Abort

Interrupt (SRQ)

Network
Instrument
������

Network
Instrument
����������

��������

Figure 1 Network Instrument Channels

The Abort channel is a secondary control channel that is used to
tell the Device to abort the current Core channel operation. The
Interrupt channel is used by the Device to send Service Requests to
the Application. However, in the case of the Interrupt channel, the
Device acts as the client and sends the request to a server process
in the Controller.

Links represent an instance of a communication pathway between
a controller and a device. Any given network instrument connec-
tion (channel) may carry multiple links created with the create_link
RPC. Also note that more than one controller may have a link open
to a single device at the same time. If this is a possibility, then you
can use a device lock to block other controllers from accessing the
device and interfering with its operation.

Figure 2 shows the basic one link connection.

Device

Controller

link1 link1

Host HostNetwork NetworkInstrument InstrumentNetwork
Instrument
Connection

(Core
Channel)

Network
Instrument
Server

Network
Instrument

Client

Figure 2 Basic Single Device Link

Device

Controller
link1
link2
link3

link2

Host
Host

Network
Network

Instrument
InstrumentNetwork

Instrument
Connection

(Core
Channel)

NetworkNetwork
Instrument

Client

Device

Device

link3

link1

Figure 3 Multiple Link Example

link1

link2

link3

k
Instrument

Client

Network
Instrument
Server link1

link2

link3

IEEE-488
Device

Controller

HostNetwork Instrument
TCP/IP IEEE-488.1
Interface DeviceNetwork

Instrument
Connection

(Core
Channel)

IEEE-488
Device

Figure 4 Gateway to GPIB Instrument Link Example

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Figure 3 shows an example of a controller having links to multiple
logical devices in a single instrument. This could be an Ethernet
instrument with three addressable sub-sections. If the single instru-
ment was a GPIB instrument it might have a single primary address
with multiple secondary addresses. Most VXI-11 devices use inst0
as the logical device name. In Figure 3, the logical device names
would be inst0, inst1 and inst2.

Figure 4 shows an example of an instrument controller linked to two
GPIB instruments through a GPIB Gateway. GPIB Gateways rec-
ognize gpib0 as the interface name for the fi rst IEEE-488.1 interface
in the Gateway. GPIB devices attached to the Gateway are referred
to by adding their GPIB address to the Gateway's interface name.

link1 can be to gpib0 - the Gateway
link2 can be to gpib0,4 - a GPIB device with a primary
 address of 4
link3 can be to gpib0,6,11 - a GPIB device with a primary
 address of 6 and a secondary address of 11.

PROGRAMMING VXI-11 DEVICES

There are two major ways to program VXI-11 Devices: make calls
to a VXI-11 compliant VISA library or install the VXI-11's RPCL
in your computer and write your program with RPC calls. Windows
users will fi nd it easier to use a VISA library which has a VXI-11
TCP/IP output and program with graphical programs like National
Instruments' LabVIEW or Agilent's VEE or make VISA calls from
familiar programming languages such as C/C++ or Visual Basic.
UNIX, LINUX and similar operating system users (Sun, Apple etc.)
will fi nd it easier to install the VXI-11 RPCL on the computer and
then to write the application program in C/C++. VISA libraries are
also available for some UNIX like operating systems but they often

have driver problems and it is best to avoid them.

VXI-11 compliant VISA libraries are available from National
Instruments and Agilent. National Instruments claims their
VISA is VXI-11 compliant but it only supports VXI-11.3 RPCs
so it can only be used with VXI-11.3 instruments. It cannot be
used to control GPIB bus functions or to completely control
VXI-11.2 GPIB Gateways such as Agilent's E5810A or ICS's
8065. The NI Enet/100 is not a VXI-11 Gateway. Agilent's
VISA supports VXI-11.2 and 11.3 RPCs so it can be used with
GPIB Gateways and VXI-11.3 instruments.

Agilent includes their VISA and SICL libraries as part of their IO
Libraries Suite. SICL is the workhorse library inside Agilent's
VISA. It is fully VXI-11.2 and 11.3 capable and has been
stable for many years. Agilent has numerous Application Notes
describing how to program with their VISA and SICL library.
Also see ICS Application Bulletin AB80-2 for an interactive
SICL keyboard program written in Visual Basic.

Figure 5 shows how easy it is for Windows programmers to
control VXI-11 instruments through a VISA layer. Figure 5A
shows how to control GPIB Instruments through a GPIB Gate-
way like the ICS 8065. A C/C++, Visual Basic or LabVIEW
programmer only has to set the resource string to a TCPIP
device to talk to the Gateway and to the instruments.

3

�����������

�����������
����������������

����

�������
��
���

�����
������������

�����������������

������������������������������

������������

��������

������
����

������

���������
����

������� �����������

����

����

Figure 5A Controlling GPIB Devices with a GPIB Gateway

�����������

�����������
����������������

����

�������
��
���

�����
������������

�����������������

������������������������������

������������

��������

������
����

������

���������
����

��� ��������������������

����

Figure 5B Controlling VXI-11.3 Instruments through VISA

Figure 5B shows a similar path through VISA to a VXI-11.3 compat-
ible instrument. In Figure 5A, the VISA resource string specifi es
gpib0, device address to select a GPIB instrument. In Figure 5B, the
VISA resource string specifi es instN to select an instrument. In both instN to select an instrument. In both instN
cases, the VISA library handles all of the VXI-11 RPC protocol.

VXI-11 PACKETS and RPC

VXI-11 was designed to function over RPC. RPC stands for Remote
Procedure Call and is a protocol designed by Sun Microsystems
many years ago (See Reference 8). The VXI-11 messages listed in
Table 1 are encapsulated within RPC messages. An RPC message
contains the function number and all of the arguments required by
the RPC service such as VXI-11. Each RPC message from the client
is acknowledged by a response message from the service.

RPCGEN CODE GENERATOR

As noted earlier, the VXI-11 protocol is based on Remote Procedure
Calls (RPC). The VXI-11 Specifi cation includes a listing of the
RPCL function prototypes. If RPC Capability has been installed on
your computer, then you have utility called rpcgen that can be used
to install the RPC stub functions in your operating system.

The rpcgen utility converts the RPCL function prototypes found
in the VXI-11 Specifi cation into the four fi les shown in Figure 6.
These fi les are tailored specifi cally for your operating system and
computer system by the rpcgen utility. If you change computers or
update the operating system, you only need to run the rpcgen utility
to get a set of updated fi les.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

rpcl_clnt.c filerpcl_svc.c filerpcl.h file rpcl_xdr.c file

rpcl.x file

rpcgen
utility

C/C++ RPCL
type definitions

Translator
functions

Code for server
implementation

Stub functions for
client program

rpcl source file

Figure 6 RPCGen Output Files

The .h fi le is a C header fi le. It contains ready-to-use C declara-
tions of the numbers and data types in the VXI-11 RPCL function
list. The _svc.c fi le can be ignored unless you are implementing a
server. Note that a server implementation is only required if you
are going to use an interrupt channel.

The _clint.c fi le contains the stub functions for your application
program to call.

USING THE BASIC RPC FUNCTIONS

Table 2 VXI-11 Program Steps

Step Function Description
 1 clnt_create() Creates RPC client and opens a channel to the
 RPC server on a VXI-11 device.
 2 create_link() Establishes a link to a logical device
 3 device_write() Sends a message or command to the logical
 device.
 4 device_read() Reads a response message from a logical device.
 5 destroy_link() Closes the link to the device.
 6 clnt_destroy() Destroys the RPC client and closes the channel.

Table 2 lists the basic steps needed to program a VXI-11 device. It
starts with using the clnt_create() function to create a RPC client
and the core channel to the device. Next create a link to the device
with the create_link() function. The returned data structure includes
a link ID number that is used for subsequent calls RPC calls to the
device. It also includes a parameter that specifi es the size of the
device's input buffer. Repeat steps 1 and 2 for each remaining logi-
cal device until channels and links have been created to all of the
VXI-11 instruments that the program will be controlling.

Next, the device_write function is used to send commands to the
device. Because VXI-11 devices are IEEE-488.2 devices, all of the
IEEE 488.2 protocol and format rules apply to the commands sent
to a VXI-11 device. This means that you program them the same
way you would program a modern GPIB instrument. The response
data is not a response to a query but rather an acknowledgement
that the message was received by the device. Any transmission or
command errors will be indicated in the response packet.

4

Use the device_read() function to read data or query responses from
the device. The termChar parameter defi nes the character used by
the device to terminate its response message.

The device_write() and device_read () functions are used as required
in the program to control the devices.

At the end of the program, use the destroy_link() function to release
the link to each device linked to at the beginning of the program.
Then use the clnt_destroy() function to close the channel and release
all of the instrument resources.

Some VXI-11 program examples show steps 2, 3, 4 and 5 together
which implies that all four steps are all required to communicate
with a VXI-11 instrument. The result is that some programmers
put unnecessary create_link() and destroy_link() functions in their
program each time they communicate with a VXI-11 instrument.
Only open a link to a logical device at the beginning of the program
and keep it open until done with the instrument. This is good pro-
gramming practise and will make your programs run faster. Note
that some vendors' instruments will 'abort' the channel if the link
count goes to zero. This is another good reason to maintain the link
until the end of the program.

Likewise do not repeatedly open and close channels. Create the
channel(s) to the device(s) at the beginning of the program and leave
them open until the end of the program. Channel opening is a time
consuming operation for the application program

Note that if locks are being used to keep an instrument from being
accessed by another client, they should be released as soon as the
instrument can be shared. If the physical connection to the instru-
ment is accidentally broken, the instrument will remain locked until
it can determine the link is broken or until it is reset or power cycled.
If the original client tries to relink to the device, it will be blocked
because the lock is still active and belongs to the broken link.

TIMEOUTS

ICS VXI-11 devices include an internal COMM_timeout which
is the period of time the device will go without a message from
the client before terminating any lock and destroying the link. Set
COMM_timeout to 2-5 minutes when debugging a new program and
the program is likely to be abruptly terminated without closing the
links and channel. This way a devices limited resources are released
sooner. After the program has been debugged, the COMM_timeout
period can be set to a longer time. If the physical link is subject to
failures, it is best to make the COMM_timeout period shorter so
the device's resources will be available sooner. Wire based systems
are fairly dependable so the COMM_timeout period can be hours
long. It is a good idea to add a background function to application
programs that periodically performs some non-invasive VXI-11
function on each device that the program is linked to if the program
has not sent that device a message in a certain amount of time. The
time should be less than each device's COMM_timeout period. This
will prevent unintentional channel closures when the application is
left idle for long periods of time.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Another LAN device element is KeepAlive. KeepAlive is a TCP/IP
function that enables the device’s socket layer to send the client a
short test message once every 120 minutes. If the client fails to
reply, the device will close the socket, release all locks and reclaim
all associated instrument links. If you do not use KeepAlive or
a COMM_timeout mechanism, then the device can run out of
resources and be inaccessible if it does not have a way to recover
unused resource. Do not enable Keep Alive if the network or the
client does not support Keep Alive messages.

ABORT CHANNEL

The Abort channel is used to send the device_abort() RPC to the
logical device to terminate the current operation. The Abort chan-
nel requires its own clnt_create() and create_link() function calls to
set the channel up. When setting up the Abort channel, note that it
does not register itself with the port mapper service. The TCP port
number used by the RPC server needs to be explicitly stated when
calling the clnt_create() function. The Abort TCP port number was
returned as part of the Core channel returned data structure. Only
the device_abort() RPC can be sent over the Abort channel.

SERVICE REQUESTS (SRQs)

Service Requests in a VXI-11 device are setup just as they would be
in a similar GPIB instrument. In the VXI-11 world, Service Requests
are passed back to the host through a reverse Interrupt channel. Here
the device acts as a client and sends the device_intr_srq() RPC to
a server application running in the host. The job of the server ap-
plication is to receive the request and inform the client application
that a device needs service. Typically this is done by setting a fl ag
that the client can periodically examine.

Use the functions in the _svc.c fi le to setup the server application.
The server application typically runs as a separate thread. Use a
svc_run() call to start the RPC server. Note that this call does not
return.

It should be mentioned that a reverse Interrupt channel has problems
because there are no periodic messages sent over it. It is possible
for the reverse channel to die without any notifi cation. If this occurs,
the application is left without a way to get a Service Request at a
crucial time. A better approach is to periodically test the device's
status in the client application.

VXI-11 AND LXI

VXI-11 is a protocol defi ning specifi cation whose goal is to control
IEEE-488.2 compliant instruments over a TCP/IP network. LXI is
a recent specifi cation for Ethernet instruments that stresses timing,
packaging and uniformity of the user experience. Unfortunately the
LXI Specifi cation does not specify a communication protocol but
it requires that LXI instruments use the undefi ned 'VXI Discovery

5
ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Method'. It is also does not require that LXI instruments be IEEE-
488.2 compliant but only that they must respond to an "*IDN?" query.
Buyers of LXI instruments need to be aware of these shortcomings
in the LXI Specifi cation and, when buying a LXI instrument, should
check the proposed instrument's specifi cations to be sure that it is
VXI-11.3 and IEEE-488.2 compliant. Else, the user may be re-
stricted to controlling the instrument through the vendor supplied
IVI drivers and any other supplied programming methods. Refer to
ICS Application Bulletin AB80-10 for more information about the
differences between the VXI-11 and LXI Specifi cations.

SUMMARY

This application note has described the VXI-11 Specifi cation, its
command set, the use of Remote Procedure Calls (RPC) and how
the client application links to devices. Guidelines are also included
on when to use a VISA library and when to use the rpcgen utility to
prepare fi les tailored to your computer. Some information is included
about RPC programing but the user should refer to ICS's other AB80
series Application Bulletins for a more detailed description about
using RPC. Many additional RPC programming references are also
available on the Internet if you search for 'RPC Programming'.

The VXI-11 Protocol provides a rugged means of connecting a client
application to a set of instruments over a TCP/IP network. Other
communication methods may have improved performance but they
do not offer the same ease of portability among different operating
systems or the error free performance of the VXI-11 protocol. They
also require special drivers that limits their application to a specifi c
operating system.

REFERENCES

The following references are reprinted from the VXI-11 Specifi ca-
tion:
[1] IEEE Std 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation.
[2] IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols,

and Common Commands For Use With IEEE Std 488.1-1987,
IEEE Standard Digital Interface for Programmable Instrumenta-
tion.

[3] Internet Protocol, Request for Comments 791, Jon B. Postel,
DDN Network Information Center, SRI International, Septem-
ber, 1981, See also MIL-STD 1777.

[4] Transmission Control Protocol, Request for Comments 793, Jon
B. Postel, DDN Network Information Center, SRI International,
September, 1981, See also MIL-STD 1777.

[5] A Standard for the Transmission of IP Datagrams over Ethernet
Networks, Request for Comments 894, C. Hornig, DDN Network
Information Center, SRI International, April 1984.

[6] XDR: External Data Representation Standard, Request for
Comments 1014, Sun Microsystems, DDN Network Informa-
tion Center, SRI International, June, 1987.

[7] A Standard for the Transmission of IP Datagrams over IEEE
802 Networks, Request for Comments 1042, J. Postel and J.
Reynolds, DDN Network Information Center, SRI International,
February 1988.

[8] RPC: Remote Procedure Call Protocol Specifi cation, Request for
Comments 1057, Sun Microsystems, DDN Network Informa-
tion Center, SRI International, June, 1988.

[9] Requirements for Internet Hosts -- Communication Layers,
Request for Comments 1122, R. Braden, DDN Network Infor-
mation Center, SRI International, October, 1989.

[10] ISO 8802-2:1989[ANSI/IEEE 802.2-1989] Information
Technology - Local and Metropolitan Area Networks - Part 2:
Logical Link Control.

[11] ISO/IEC 8802-3:1993 [ANSI/IEEE 802.3-1993] Information
Technology - Local and Metropolitan Area Networks - Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/
CD) Access Method and Physical Layer Specifi cations.

[12] The Ethernet, Physical and Data Link Layer Specifi cations,
Version 2.0, Digital Equipment Corporation, Intel Corporation,
and Xerox Corporation, 1982.

