
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-13

INTRODUCTION

Getting a Service Request from a VXI-11.3 compatible instrument
is sometimes needed in an application program to signal that the
instrument needs help, that it has a problem with a particular com-
mand or that it has completed a long term task. Adding the code to
handle a Service Request is often difficult since there are so very
few examples around and because the Reverse Channel usage is so
very different from the normal core channel.

Also, while the VXI-11 Specification discusses the Reverse Interrupt
Channel at several places in the Specification, it does not give the
reader a good comprehensive description of the Reverse Channel
operation. This Application Note is intended to remedy that omission
by giving the user the information necessary to implement a Reverse
Interrupt Channel and an working C language example.

REVERSE CHANNEL CONCEPT

When the client application links to a VXI-11.3 instrument, it typically
creates one or two channels. The first channel is a bi-directional
Core Channel for transmitting data and commands between the cli-
ent and the instrument. The second channel is the Abort Channel
which is used by the client to abort a command previously sent to
the instrument.

Only the Core Channel is required. The Abort and Reverse Interrupt
Channel are optional.

This application note deals with the third channel which is an optional
Reverse Interrupt Channel that can be created to handle the Service
Requests from the instrument. The Interrupt Channel is unique in
that the instrument is the client and the user's application program
is the server. The three channels are shown in Figure 1.

The concept of RPC communication is that the originator of the
message is considered the RPC Client, with the receiver of the
message being defined as the RPC Server. Since the SRQ notifica-
tion must originate from the Instrument (Server), this defines the

CODING FOR REVERSE CHANNEL SERVICE REQUESTS
From VXI-11.3 Compatible Instruments

Instrument (Server) as being the RPC Client when sending the SRQ
notification message.

VXI-11 CAPABLE RPC SUPPORT LIBRARY

The method used in the example program requires a VXI-11 capable
RPC support library. The example was coded with functions from
ICS's internal test library to initiate RPC calls. The user will have
to substitute equivalent functions from his selected RPC support
library. Companies such as Nebulla LLC (http://www.netbula.
com/oncrpc/) or Distinct Corporation (http://www.distinct.com/)
provide ONC RPC support libraries for WIN 32 applications.
Their libraries will have equivalent functions to those used in the
example program.

Note: - ICS has not tested the Nebulla or Distinct ONC libraries and
does not endorse them over any other ONC libraries.

One thing to consider when selecting an ONC library or using
shareware is the open source disclosure requirements. Do you have
to or want to disclose your company's code?

06-22-10

Figure 1 VXI-11 Client-Server Channels

2

EXAMPLE PROGRAM CONCEPT

The Example Program runs on the client computer and takes ad-
vantage of a VXI-11 compatible instrument's ability to generate a
Service Request when it receives a bad or incorrect command. All
VXI-11.3 instruments must be IEEE-488.2 compliant per the VXI-
11 Specification. Figure 2 shows the minimum Status Reporting
Structure required in a IEEE-488.2 compatible instrument.

Caution: Be careful with LXI instruments. The LXI Specification
does not require LXI instruments to be IEEE-488.2 compliant so
check the manufacturer's specifications before running this example
program with any LXI instruments.

The Status Reporting Structure works in the following manner.
When the instrument receives a bad or illegal command, it sets bit
5 in the Standard Event Status Register (ESR Register). Setting the
corresponding bit in the Event Status Enable Register allows the bit
status cascade down and set bit 5 in the Status Byte Register. Setting
the corresponding bit in the Status Byte Enable Register will let a
set bit generate a Service Request (SRQ) by setting bit 6.

The example program has three parts: a Callback Routine, an IDN
Query Routine and the Main Section. The Callback Routine sets
the callback flag when called. The IDN Query Routine reads the
instrument's IDN message when called.

The Main.c gets the target's (instrument's) IP address and creates
a link to it. It then performs and IDN query to be sure it has com-
munication with the correct instrument. The Status Byte is cleared
and the Reverse Channel is created. Next an '*ESE 32' command is
sent to enable bit 5 in the ESR Register and an '*SRE 32' command
is sent to enable bit 5 in the Status Byte Register. After the setup
is complete, the thread goes into a long loop.

A bad command is then written out to the instrument to create the
service request. The callback function in a separate thread sets the
callback flag when it recognizes the key word "Hello".

When the Main program sees that the Callback Flag is set, it reads
the Status Byte to knock down the SRQ bit (bit 6) and then reads the
ESR Register to clear the bit 5. The second read of the Status Byte
confirms that the Status Byte is now 0. Any other steps needed to
service the Service Request could be inserted at this point.

ADAPTING THE EXAMPLE TO YOUR PROGRAM

First find and adopt a RPC Support Library. Then determine what
will be the cause of the Service Request and what actions you need
to take as a result of the Service Request. Examine the instrument's
Status reporting Structure and decide what bits need to be enabled to
generate the Service Request. Figure 2 shows the simple minimal
required Status Structure. While many instruments have expanded
Status Reporting Structures with many potential ways to generate
Service Requests (SRQs), the concepts in the example program still
apply. Be sure to replace the calls to ICS's internal library (light
gray boxes in the example listing) with calls to your library.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

Po
w
er
O
n

U
se
rR

eq
ue
st

C
om

m
an
d
Er
ro
r

Ex
ec
ut
io
n
Er
ro
r

D
ev
ic
e
D
ep
en
de
nt
Er
ro
r

Q
ue
ry
Er
ro
r

R
eq
ue
st
C
on
tro
l

O
pe
ra
tio
n
C
om

pl
et
e

Standard
Event Status
Register
*ESR?

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Lo
gi
ca
lO

R

&
&

&
&

&
&

&
& Standard

Event Status
Enable
Register

*ESE <NRf>
*ESE?

Queue
Not-Empty

7 5 4 3 2 1 0

Lo
gi
ca
lO

R

&
&

&
&

&
&

&

7 6 3 2 1 0
RQS

MSS
ESB MAV

{

{Service
Request

Generation

Output Queue

Status Byte Register
read by Serial Poll

read by *STB?

Service Request
Enable Register
*SRE <NRf>

*SRE?

Figure 2 IEEE-488.2 Required Status Reporting Structure

3

EXAMPLE REVERSE CHANNEL PROGRAM

INCLUDES

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>
#include <conio.h>
#include <time.h>

#include “gpib.h”

int volatile callbackFlag;

CALLBACK SUBROUTINE

void __stdcall callback (char key[], int keyLen)
 {
 char buf[1024];

 memcpy (buf, key, keyLen);
 buf[keyLen] = ‘\0’;

 printf (“Key: [%s]\r”, buf);

 callbackFlag = 1;
 }

IDN QUERY SUBROUTINE

idnQuery (int link)
 {
 int j;
 char buf[1024];

 if (device_write (link, 0x04, “*IDN?\n”))
 {
 printf (“Error performing *IDN query write\n”);
 exit (1);
 }

 j = sizeof(buf);
 if (device_read (link, 0x08, buf, &j, 0x00))
 {
 printf (“Error performing *IDN query read\n”);
 exit (1);
 }
 }

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

MAIN.C

int main (int argc, char *argv[])

 {
 int i, link, loop;
 short s;

 if (argc != 2)
 {
 printf (“Please provide target IP\n”);
 exit (1);
 }

 if (!initEth488 (argv[1]))
 {
 printf (“Error: Unable to perform initEth488 at IP %s\n”,
argv[2]);
 exit (1);
 }

 // Create a link to the device. P=0 & S=0 means inst0
 i = create_link (argv[2], 0, 0, 0, &link);

 if (i)
 {
 printf (“Error %d on create_link for device\n”, i);
 exit (1);
 }

 idnQuery (link);

 // Flush the status byte to be certain it is empty.
 device_readstb (link, &s);

 create_intr_chan ();
 device_enable_srq (link, “Hello”, 5, callback);

 // Initialize the unit to detect an Command Error and generate
 // a reverse channel (SRQ) message.
 device_write (link, 0x04, “*ESE 32\n”);
 device_write (link, 0x04, “*SRE 32\n”);

 for (loop= 0; loop < 100000; ++loop)
 {
 printf (“Loop: %d ... “, loop);
 callbackFlag = 0;

 // Now generate a Command Error by sending the instrument
an obviously illegal command (*EEE).
 // This should cause a reverse channel message to be gener-
ated.
 device_write (link, 0x04, “*EEE\n”);

Note: Gray boxes indicate calls to ICS's internal library. Replace them with calls to your RPC Support Library

4

References:

The following references were used in the course of developing
this program:

* VXI-11 RPC Programming Guide for the 8065: An Introduc-
tion to RPC Programming, Application Note AB80-3, ICS
Electronics.

* VMEbus Extensions for Instrumentation: TCP/IP Instrument
Protocol Specification VXI-11, Revision 1.0, July 17, 1995.

* Power Programming with RPC, John Bloomer, O’Reilly & As-
sociates, Inc., 1992.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

 disconnectEth488 ();

 return (0);
 }

SUMMARY

This Application Note has described the major characteristics of a
VXI-11 Reverse Interrupt Channel and how an example program
works.

The Application Note also includes an C language example that sets
up a reverse channel, enables the instrument to generate a Service
Request and then handles the Service Request.

 // Now wait for up to 10 seconds for a reverse channel mes-
sage to be seen.
 for (i= 0; i < 200; ++i)
 {
 if (callbackFlag)
 {
 if (device_readstb (link, &s))
 {
 printf (“Error executing device_readstb\n”);
 exit (1);
 }
 else
 {
 if (device_write (link, 0x04, “*ESR?\n”))
 {
 printf (“Error writing the *ESR query\n”);
 exit (1);
 }
 else
 {
 char buf[1024];
 int j= sizeof(buf);

 if (device_read (link, 0x08, buf, &j, 0x00))
 {
 printf (“Error reading *ESR query response\n”);
 exit (1);
 }

 if (device_readstb (link, &s))
 {
 printf (“Error executing second device_readstb\
n”);
 exit (1);
 }
 }
 }

 idnQuery (link);

 // Terminate the loop and exit
 break;
 }
 else
 {
 // Pause 100ms
 Sleep (100);
 }
 }

 if (!callbackFlag)
 {
 printf (“No background interrupt detected\n”);
 exit (1);
 }
 }

http://www.icselect.com/ab_note.html#vxi11
http://www.icselect.com/vxi_spec.html
http://www.icselect.com/vxi_spec.html
http://www.oreilly.com/catalog/9780937175774/?CMP=OTC-KW7501011010&ATT=rpc

