
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-16

INTRODUCTION

This application bulletin describes how to communicate and
control a VXI-11 instrument using SCPI commands from a C
language program in a Intel-Windows PC. The task is to provide
an example of sending SCPI commands to a VXI-11 instrument to
control bits in its digital interface. This example utilizes a VISA
library to handle the communication between the program and
the VXI-11 instrument.

GENERAL CONCEPTS

The instrument chosen is an ICS' 8063 Ethernet to Digital Inter-
face. The Model 8063 has a 48-line digital interface that can be
user confi gured as inputs or outputs in 8-bit bytes. The 8063 is
an VXI-11.3 compatible instrument that communicates over the
network using RPC or the VXI-11 protocol. The VXI-11 protocol
provides GPIB like functionality over an Ethernet network. For
more information about the VXI-11 Specifi cation and the VXI-11
communication protocol, see AB80-11

There are two ways for a Windows PC to communicate with a
VXI-11 instrument. One is to use the industry standard ONC
RPC1 protocol. Unfortunately Microsoft's RPC does not comply
with the ONC RPC used in VXI-11 instruments and Linux/Unix
systems so anyone wishing to use RPC on a PC would have to
install a third party's RPC package. The second alternative is to
use an a VXI-11 compatible VISA library that converts program
calls to the VXI-11 protocol. VXI-11 compatible VISA librar-
ies are available from Agilent and National Instruments. This
example uses the VISA library from National Instruments.

An Example C Language Program for sending SCPI commands
to a VXI-11 Instrument

PREPARATION

For this example, you will need a VISA runtime system installed
on your PC. On a Win32 system, this is a DLL library and is
normally found in the \Windows\System32 folder. The National
Instruments VISA library is named VISA-32.DLL.

If you do not have a VISA library on your PC, download a copy
from National Instrument's website. VISA specifi c functions
are noted with "vi" preceding the function name. For more infor-
mation on VISA commands please reference the documentation
specifi c to the VISA you are using.

The user must supply the VISA.H header fi le which defi nes the
VISA functions and constants. In addition, the user must supply
the VISA OBJ (or LIB) fi le to be linked to the example. The OBJ
(or LIB) contains the stubs required to invoke the VISA DLL
library at runtime.

PROGRAM DESCRIPTION

The code is divided into two main sections, the fi rst section
deals with establishing communication and identifying your
instrument. All IEEE-488.2 and VXI-11 compatible devices will
respond to an *IDN query with a unique text string that identi-
fi es the device. Thus a simple communication test consists of
writing the minimal VISA functions required to open a session
to the device and then perform an *IDN query and then reading
back the response. This confi rms that bi-directional datafl ow is
possible and that the correct device is responding.

After confi rming that a VISA communication has been established
we move into the second section of code. Five consecutive SCPI
commands are sent via VISA write(viWrite) command. These
commands are examples of byte and bit commands setting the
inputs and/or outputs. Once all the command are executed then
the VISA resource will be closed and the program will wait for

04-25-11

Notes: 1. ONC RPS stands for Open Network Computing
Remote Procedure Calls developed by Sun Microsystems. See
Reference 3.

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

any key to be pressed before exiting the program. This allows
you to review any error messages that may have appeared during
runtime. In a test application, the VISA resource(s) should only
be closed when exiting the program.

EXAMPLE CODE

Figure 1 lists an example C language program that calls the
National Instruments' VISA library to communicate with a VXI-
11 instrument. Using the VISA commands to communicate we
can send SCPI commands to the instruments interface. A zip
fi le with the complete project can be downloaded from the ICS
Electronics website as SCPI_Example.zip.

This example code uses ICS's default IP address for Ethernet
instruments. Change the IP address to match your instrument or
change the instrument's IP address prior to running the program.
See the instrument's manual for instructions on changing its IP
address[5]

Text continues on page 3.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include “visa.h”

#defi ne WaitForKeystroke {while (!_kbhit()) {}}

static char outputBuffer[VI_FIND_BUFLEN];
static ViSession defaultRM, instr;
static ViStatus status;
static ViUInt32 count;
static ViUInt16 portNo;

//TargetIP can be changed here to locate your own device.
//Current Example Works with ICS Electronics default settings.
static char targetIP[] = “TCPIP0::192.168.0.254::inst0::INSTR”; //

//SCPI commands used in VIWrite command.
//These can be changed to fi t your needs

//Sets Port 4 Outputs to low polarity true
static char command0[] = “SOURce:DATA:PORT4:POLarity #h00”;

//Sets Port 4 Outputs to zero
static char command1[] = “SOURCE:DATA:PORT4 0”;

//Outputs a one on port 4 bit 1
static char command2[] = “ROUTe:CLOSe 4,1 “;

//Sets Port 1 Inputs to High polarity true
static char command3[] = “SENSE:DATA:PORT1:POLARITY #HFF”;

//Reads Port 1
static char command4[] = “SENSE:DATA:PORT1?”;

Figure 1 C Language Example continued

int main(void)
{
char result[100];

 // First we will need to open the default resource manager.
 status = viOpenDefaultRM (&defaultRM);
 if (status < VI_SUCCESS)
 {
 printf(“Could not open a session to the VISA Resource Manager!\
n”);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 return(1);
 }

 // Now we will open a session via TCP/IP
 // TargetIP can be modifi ed via static char listed above.
 status = viOpen (defaultRM, targetIP, 0, 0, &instr);
 if (status < VI_SUCCESS)
 {
 viClose(defaultRM);
 printf (“An error occurred opening the session to %s\n”,targetIP);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 return(1);
 }

 //Sets Delay Time
 viSetAttribute (instr, VI_ATTR_TCPIP_NODELAY, 1);

 //Uses the viWrite command to write an “*idn?” message.
 //See viWrite command for more information.
 status = viWrite (instr, “*idn?\n”, 6, &count);
 if (status < VI_SUCCESS)
 {
 viClose(defaultRM);
 printf(“viWrite *idn? failed with error code %x \n”,status);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 return(1);
 }

 //Reads reply and saves reply in result.
 status = viRead (instr, result, 100, &count);
 if (status < VI_SUCCESS)
 {
 viClose(defaultRM);
 printf(“viRead failed with error code %x \n”,status);
 WaitForKeystroke
 return(1);
 }
 //places end of string at the end of the IDN reply
 result[count] = ‘\0’;

 //prints reply message to “*IDN?”
 printf(“The server response is:\n %s\n\n”, result);

/*---*/

ICS Electronics 7034 Commerce Circle, Pleasanton, CA 94588 Phone: (925) 416-1000 Fax: (925) 416-0105

/* //------SCPI Commands------// */
/*---*/

 printf(“Press any key to start SCPI commands\n”);
 WaitForKeystroke

 // command0-4 are SCPI commands listed at the top.
 //Sets Port 4 Outputs to low polarity true
 status = viWrite (instr, command0, sizeof(command0), &count);
 if (status < VI_SUCCESS)
 {
 printf(“viWrite command0 failed with error code %x \n”,status);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 }

 //Sets Port 4 Outputs to zero
 status = viWrite (instr, command1, sizeof(command1), &count);
 if (status < VI_SUCCESS) //Error Checking
 {
 printf(“viWrite command1 failed with error code %x \n”,status);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 }

 //Sets Port 4 Outputs to zero
 status = viWrite (instr, command1, sizeof(command1), &count);
 if (status < VI_SUCCESS) //Error Checking
 {
 printf(“viWrite command1 failed with error code %x \n”,status);
 printf(“Press any key to continue\n”);
 WaitForKeystroke
 }

Figure 1 C Language Example continued

 //Outputs a one on port 4 bit 1
 status = viWrite (instr, command2, sizeof(command2), &count);
 if (status < VI_SUCCESS) //Error Checking
 {
 printf(“viWrite command2 failed with error code %x \n”,status);
 printf(“Press any key to continue \n”);
 WaitForKeystroke
 }

 //Sets Port 1 Inputs to High polarity true
 status = viWrite (instr, command3, sizeof(command3), &count);
 if (status < VI_SUCCESS) //Error Checking
 {
 printf(“viWrite command3 failed with error code %x \n”,status);
 printf(“Press any key to continue \n”);
 WaitForKeystroke
 }

 //Reads Port 1
 status = viWrite (instr, command4, sizeof(command4), &count);
 if (status < VI_SUCCESS) //Error Checking
 {
 printf(“viWrite command4 failed with error code %x \n”,status);
 printf(“Press any key to continue \n”);
 WaitForKeystroke
 }

 //Closes all resources
 status = viClose (instr);
 status = viClose (defaultRM);
 printf (“\nHit any key to exit.”);
 WaitForKeystroke
 return 0;
}

SUMMARY

This Application Note has described how to develop a 'C' language
program that can use SCPI commands to control the digital inter-
face on an ICS 8063 Ethernet to Digital Interface. The example
program was limited to a few commands that toggled the I/O
lines and read back the state of the I/O lines. The example can
be expanded by adding more commands to the program. This
example applies to all ICS 80x3 products. The program can be
applied to other instruments by changing the SCPI commands
to those that apply to the new instrument.

REFERENCES

The following references provide more information on the sub-
jects discussed in this Application Note:
[1] IEEE Std 488.1-1987, IEEE Standard Digital Interface for

Programmable Instrumentation.
[2] IEEE Std 488.2-1992, IEEE Standard Codes, Formats,

Protocols, and Common Commands For Use With IEEE Std
488.1-1987, IEEE Standard Digital Interface for Program-
mable Instrumentation.

[3] RPC: Remote Procedure Call Protocol Specifi cation, Request
for Comments 1057, Sun Microsystems, DDN Network
Information Center, SRI International, June, 1988.

[4] VXI-11 description based on VXI-11 Specifi cation Revision 1.0 dated
1995. Copies available from the VXI Consortium at http://www.vxi.
org/?q=node/206

[5] ICS 8063 SCPI commands from 8063 Instruction Manual. Copies
available from http://www.icselect.com/

