
1

APPLICATION
BULLETIN

ICS
ELECTRONICSICS

division of Systems West Inc.

AB80-3

INTRODUCTION

ICS's new 8065 Ethernet-to-GPIB Controller is a VXI-11 compat-
ible device.  The 8065 can be programmed with calls to a VXI-11 
compliant VISA1, with Agilent's SICL library or with VXI-11 RPC 
commands.  This Application Note describes what RPC commands 
are and shows how RPC calls can be used with ICS's 8065 to control 
GPIB instruments.  

VXI-11 INTRODUCTION

The VXI-11 Specifi cation specifi es a protocol for communication 
with (test or measurement) devices over a network (LAN) via TCP/IP.  
This protocol uses the ONC/RPC (Open Network Computing/Remote 
Procedure Call) standard which is based on TCP/IP and is described 
in the ‘VXI-11: TCP/IP Instrument Protocol Specifi cation’.

VXI-11 is the overall VXI-11 document and describes the network 
protocol.  There are three sub-specifi cations.  VXI-11.1 is for a VXI 
chassis and is not applicable to the 8065.  The VXI-11.2 Specifi ca-
tion defi nes how the gateway, like the 8065, controls the GPIB bus 
and performs bus specifi c functions.  The VXI-11.3 Specifi cation 
describes instrument specifi c functions including data transfer to 
and from an instrument.  

ICS's 8065 has both VXI-11.2 and VXI-11.3 capability so it can 
be used just as you would any 488.2 Controller.  Generating IFCs 
and performing 488.2 protocols such as FindLstn are no problem 
for the 8065.  Competitive units with only VXI-11.3 capability are 
limited to just device specifi c functions.

RPC

RPC stands for Remote Procedure Calls.  An RPC server, like the 
8065, implements a desired set of RPC protocols to carry out specifi c 
functions. In RPC language they are called programs and these can 
exist in different versions. If a client and a server agree on a certain 
program in a certain version, they as a result establish a  channel. This 

VXI-11 RPC Programming Guide for the 8065
An Introduction to RPC Programming

channel then allows the client to request of the server the execution 
of channel-specifi c set of remote procedure calls.  RPC calls are the 
requests to the server to execute one of the functions.

The programmer should have a RPC package for his system that 
includes a protocol converter (rpcgen).  Because the VXI-11 Specifi -
cation contains an RPCL (RPC Language) description of the protocol 
in Section C,  it is possible to use the protocol generator (rpcgen) 
to generate client and server stubs for  C language programs which 
makes application development much easier.  

For more information on RPC, the readers may want to look at the 
references at the end of this Application Note.

CHANNELS

The VXI-11 standard states that a network instrument host has to 
implement a certain set of RPC functions on three different chan-
nels. These are the:

• Core Channel: send commands from the Network interface client 
to the network interface server,

• Abort Channel: abort a previously sent (core channel) com-
mand,

• Intr Channel: send an interrupt from the network interface (8065 
as a client) to the Application (as a server).

CORE CHANNEL

The core channel is used to establish links to the 8065 and to the 
devices on the bus.  The links can be created and destroyed.  The 
create_link call takes an identifying string as parameter and returns, 
if successful, a handle (of type Device_Link), which is to be used 
in following calls like device_read or device_write. All addressing 
of the devices is hidden behind this handle. Additionally one may 
call create_link with an identifi cation string of the network interface 
server itself (no special device). The resulting link can then be used 
to perform GPIB bus operations or modify the server's operation.   

09-06-11

Notes: 1.  Some VISA libraries like those from National Instruments do not provide 
interface level commands and limit the 8065 to just VXI-11.3 functions.



2

In the special situation of the GPIB server (8065), the identifying 
string is “gpib0” for the server and “gpib0,<n>” for devices, where 
<n> is the GPIB address of the device. Some calls like device_docmd 
only work with the server link, and not with device links.  Other 
commands like device_read and device_write are intended for 
device links.

Since the network interface server resides in a network, it is pos-
sible for more than one client to establish a connection to the server. 
To avoid concurrent access to devices, links can be locked by the 
client. The device_lock and device_unlock calls are used for this 
purpose.  Because a one client might not be aware of the existence 
of another client, it is possible to specify a lock_timeout in the calls 
so the calls wait a certain number of milliseconds for an existing 
lock to be released. 

FLAGS FIELD

The Flags fi eld is only used during actual Read/Write operations. Of 
the three fi elds, one is used for writing and one is used for reading, 
with the third fl ag (WaitLock) used for both operations.

The End fl ag is used when writing to an instrument. In the GPIB 
world, a write operation normally has the last character sent with 
the EOI signal asserted to indicate that the current character is the 
last character of the transmission. It is possible to write multiple 
blocks of data as a single write, if the End fl ag is zero on all but the 
last block. The last block of a write should always have the End fl ag 
set.  If the device wants a terminating character, such as a linefeed 
(0x0A), it can  be added as the last character in the message.

The TermChrSet is used when reading from an instrument. Most 
instruments use a terminating character (normally a linefeed, 0x0A) 
at the end of the data message to terminate the message. (Binary 
data is terminated by asserting EOI on the last character of the 
message) If TermChrSet is set to one, then the character will cause 
the 8065 to terminate the read and return all prior read data to the 
client. If it is set to zero, then only an EOI will be able to terminate 
a read. Note that the read length being met will always cause the 
read to terminate.

The WaitLock tells the 8065 to wait for up to lock_timeout amount 
of time if another client has the instrument locked. The  simply ig-
nore the WaitLock fl ag while you’re learning how to communicate 
with the 8065.

ABORT AND INTERRUPT CHANNEL

The intr and abort channels both support only one call (device_intr_srq 
and device_abort).  With the device_abort call the client can abort a 
previously given (core channel) call that is still in progress.  Some 
GPIB operations are completed immediately and the device_abort 
call will have no affect.  An useful example is cancelling a read 
from a device that has no data.  

The intr channel is used to implement GPIB service requests (SRQ).  
The intr channel effectively reverses the rolls of the network interface 
server and client.  Here the 8065 becomes a client and the application 
becomes the server. To setup the intr channel the application supplies 

an SRQ handler or RPC server, and uses the create_intr_chan call 
to ask the 8065 to create an intr channel.
                      
To generate the interrupt, the client enables the device to generate 
the SRQ and gives it an id key.  This also sets the 8065 to Auto 
Serial Poll.   When the enabled instrument generates a SRQ, the 
8065 serial polls the enabled device(s) and passes a message with 
the id key of the SRQ generator to the RPC service function in the 
PC (Application).  The RPC service function receives but does not 
reply to the interrupt message.  Instead a fl ag or other signal should 
be set so that the main routine in the client application will read the 
status byte from the instrument who generated the SRQ and service 
the instrument.

For more details on creating and using the intr channel, see Applica-
tion Note AB80-4 'SRQ Handling with a VXI-11 Interrupt Channel 
on ICS’s Model 8065 Ethernet-to-GPIB Controller'

SIMPLE PROGRAM STEPS

The following are the basic steps for writing a simple program that 
reads the IDN message from an instrument at address 28.

1. Initialize the RPC layer.
2. Using RPC, send the following VXI-11 commands.
    a) create_link to “gpib0,28”
    b) device_write “*IDN?” with the End fl ag set to one
    c) device_read with TermChrSet set to zero
    d) destroy_link
3. Close the RPC layer

USING THE GENERATED PROTOCOL

The following examples are for a UNIX operating system but apply 
to any operating system with an RPC package.  While the examples 
are believed to be correct, the user assumes all responsibility for 
their operation in his system.  

The VXI-11 RPCL protocol description consists of two fi les: 
vxi11core.rpcl (in paragraph C.1) containing core and abort channel 
and vxi11intr.rpcl (in paragraph  C.2) containing the intr channel.  

The rpcgen utility program creates a number of C language fi les 
from the RPCL protocol description.  The fi les include:

• a header fi le xxx.h, containing the type defi nitions, the function 
numbers and the prototypes for the generated functions

• a C source fi le xxx_clnt.c containing client side functions
• a C source fi le xxx_svc.c containing server side code and
• a C source fi le xxx_xdr.c containing data type conversion func-

tions for the data types declared in xxx.rpcl.

Not all of the generated fi les are needed unless you want to imple-
ment the complete protocol.  The abort and intr channel are optional 
in a network interface client (Application).  Note that the 8065 
includes a complete core, abort and intr channel implementation 
for a network server.

To illustrate how rpcgen transforms an RPCL declaration into C 
source code, consider the following simple example:



3
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

EXAMPLE RPC -> C

This is the RPCL declaration of a function taking two integers as 
parameter and returning two fl oats together with the type declaration 
of its parameters and return values (fi le simple.rpcl):

struct Parms
{
 int p1;
 int p2;
};
struct Resp
{
 fl oat a;
 fl oat b;
};
program SIMPLE
{
 version SIMPLE_VERSION
{
  Resp simple_func (Parms) = 1;
 } = 1;
} = 0x0607AF;

This is transformed by rpcgen to the C declarations (simple.h):

#include <rpc/types.h>
struct Parms {
 int p1;
 int p2;
};
typedef struct Parms Parms;
bool_t xdr_Parms();

struct Resp {
 fl oat a;
 fl oat b;
};
typedef struct Resp Resp;
bool_t xdr_Resp();

#defi ne SIMPLE ((u_long)0x444)
#defi ne SIMPLE_VERSION ((u_long)1)
#defi ne simple_func ((u_long)1)
extern Resp *simple_func_1();

The last declared function is the one the user is actually going to 
call. NOTE: the generated function prototypes do not contain pa-
rameter declarations.   If you want to be sure, read the corresponding 
xxx_clnt.c fi le. The general rule is: fi rst argument is a pointer to the 
(user allocated) parameter; second argument is the CLIENT handle 
as obtained from clnt_create (declared in rpc/rpc.h).  

Client Code

The client side call of the remote procedure could look like this:

Parms parms;
Resp *resp;

/* Fill parms structure */
parms.p1 = 1;
parms.p2 = 2;

/* Do the call; rpcClient is the RPC CLIENT 
handle */
resp = simple_func_1(&parms, rpcClient);

/* Evaluate result */
if (resp == NULL)
{
 clnt_perror(rpcClient, “<name of the 
    server>”);
 return;
}
/* resp now points to a (static) structure 
holding the
result values
*/

Server Code

The server side only has to defi ne the function:

Resp *simple_func_1(Parms *parms)
{
...
}

The server routine automatically calls simple_func_1 as soon as the 
RPC request arrives from a client.

UNDER UNIX

The protocol generator, rpcgen, generates source code that is directly 
usable under the operating system.   While this example is for UNIX, 
the example applies to any operating system with an RPC package.  
The basic steps are:

Include Files 

 The following header fi les must be included:

#include <rpc/rpc.h>
#include “vxi11core.h”
#include “vxi11.h”

Open RPC Connection

To start, we must open an RPC connection. The client handle rpc-
Client is used in all subsequent RPCs.Client is used in all subsequent RPCs.Client

CLIENT   *rpcClient;
static char  *svName = “box10.acc”;

/* open rpc connection */
rpcClient = clnt_create(svName,DEVICE_CORE,
 DEVICE_CORE_VERSION, “tcp”);
if (rpcClient == NULL)
{
 clnt_pcreateerror(svName);
 return 1;
}



4

Create Device Link

Before sending any data to our device we must create a device link.  
Here the device is at a GPIB primary address of 28.  Use 'gpib0,28' 
as the device.

/* fi ll Create_LinkParms structure */
crlp.clientId = rpcClient;
crlp.lockDevice = 0;
crlp.lock_timeout = 10000;
crlp.device = “gpib0,28”;

/* call create_link on instrument server */
crlr = create_link_1(&crlp, rpcClient);
if (crlr == NULL)
{
 clnt_perror(rpcClient, svName);
 return 1;
};
           

Example: Send String 
       
To send a string (cl) to our device we do the following:

Device_WriteParms  dwrp;
Device_WriteResp   *dwrr;

dwrp.lid = crlr->lid;
dwrp.io_timeout = IO_TIMEOUT;
dwrp.lock_timeout = LOCK_TIMEOUT;
dwrp.fl ags = VXI_ENDW;
dwrp.data.data_len = strlen(dval);
dwrp.data.data_val = dval;

dwrr = device_write_1(&dwrp, cl);
...
/* error test here like above */.

Note that most GPIB devices use the linefeed terminating character 
to terminate a ASCII string.  Newer IEEE-488.2 devices can also 
sense the EOI line when it is asserted on the last character of the 
string.  Use the End fl ag when writing. Set the End Flag to 1.  Use 
TermChrSet to set the terminating character.  Specify the TermChr 
within the device_read command.

Destroy Device Link

If the link to the device is no longer needed destroy it:

Device_Error *derr;

derr = destroy_link_1(&(crlr->lid), rpcCli-
ent);
      

Close RPC Connection

At the and of the program the client handle must be destroyed.

clnt_destroy(rpcClient);

PORTING TO OTHER SYSTEMS

The source code generated by rpcgen uses some static variables 
(e.g. for the returned structures) and is therefore not reentrant. The 
user has to take this into account when writing his application.  Of 
interest are the following generated fi les:

• vxi11core_clnt.c: client side functions for the core and abort 
channel

• vxi11intr_svc.c: server side functions for the intr channel

Be especially aware of this limitation when the RPC code is called 
by a higher level library or application with multi-treaded capability. 
One such example is VxWorks.

SuSE EXAMPLE

The following is a complete Linux example for SuSE 10.0.  The 
example creates links to an ICS 8065 then to a HP437B Power 
Meter at GPIB address 12.

#include “vxi11core.h”
#include <stdio.h>

#defi ne WAITLOCK_FLAG 1
#defi ne WRITE_END_CHAR 8
#defi ne READ_END_CHAR 0x80
#define VXI_ENDW (WAITLOCK_FLAG | WRITE_END_
CHAR)

CLIENT *rpcClient;
Create_LinkParms crlp;
Create_LinkResp *crlr;

Device_WriteParms dwrp;
Device_WriteResp *dwrr;

Device_ReadParms drdp;
Device_ReadResp *drdr;

Device_Error *derr;

static char *svName = “192.168.46.105”;

int main(){
   char sendMessage[1024];
   char responseMessage[2048];
   rpcClient = clnt_create(svName, DEVICE_CORE, DEVICE_
CORE_VERSION, “tcp”);
   if (rpcClient == NULL){
      printf(“Error creating client\n”);
      clnt_pcreateerror(svName); 
      return 1;
   }
   printf(“Hello %s\n”, svName);
   crlp.clientId = rpcClient;
   crlp.lockDevice = 0;
   crlp.lock_timeout = 10000;
   crlp.device = “gpib0,12”;



5
ICS Electronics     7034 Commerce Circle, Pleasanton, CA 94588     Phone: (925) 416-1000     Fax: (925) 416-0105

   crlr = create_link_1(&crlp, rpcClient);
   if (crlr == NULL){
      clnt_perror(rpcClient, svName);
      return 1;
   }

   printf(“Link created to %s\n”, crlp.device);

   dwrp.lid = crlr->lid;
   dwrp.io_timeout = 1000;
   dwrp.lock_timeout = 10000;
   dwrp.fl ags = VXI_ENDW;
   sprintf(sendMessage, “*IDN?\n”);
   dwrp.data.data_len = strlen(sendMessage);
   dwrp.data.data_val = sendMessage;

   dwrr = device_write_1(&dwrp, rpcClient);
   if (dwrr == NULL){
       clnt_perror(rpcClient, svName);
       return 1;
   }
   printf (“device_write returns error code %d\n”, dwrr->error);
   
   drdp.lid = crlr->lid;
   drdp.io_timeout = 1000;
   drdp.lock_timeout = 10000;
   drdp.fl ags = VXI_ENDW;
   drdp.termChar = ‘\n’;
   drdp.requestSize = 1024;

   drdr = device_read_1(&drdp, rpcClient);
   if (drdr == NULL){
       clnt_perror(rpcClient, svName);
       return 1;
   }
   printf(“device read returns error %d, reason %d.\n”, drdr->er-
ror,
drdr->reason);
   printf(“response = %s\n”, drdr->data.data_val);
   
   
   
   derr = destroy_link_1(&(crlr->lid), rpcClient);

   clnt_destroy(rpcClient);
   
}

DEBUGGING HINTS

Lost device LIDs, lost data or overwritten LIDs may be caused by 
not saving the LID or data before calling the next RPC function.  
Some RPC implementations return a pointer to a LID or data buf-
fer when executing a create_link or read call.  The user must read 
and save the values in his own variables to keep them from being 
overwritten by a subsequent RPC call.

SUMMARY

This application note has described RPC calls and shown how the  
calls are generated by the rpcgen utility.  A brief examples are pro-
vided so the reader can better understand how RPC calls are used 
with the 8065 to control GPIB devices. 

This application note is only intended to introduce the reader to the 
RPC concept and guidelines for programming with the 8065.  The 
following references are recommended reading before attempting 
RPC coding:

1. "Cisco IOS for S/390 RPC/XDR Programmer’s Reference".
http://www.cisco.com/univercd/cc/td/doc/product/software/ioss390/
ios390rp/

2. Halfway down, “Managing the Server”
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/prog-
comc/rpc_ref.htm

3. Builds and registers a simple RPC service.
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/prog-
comc/rpc_lowest_ex.htm#a287x92028

4. Similar to the second URL, but with more examples.
http://www.unet.univie.ac.at/aix/aixprggd/progcomc/rpc_ref.htm

The reader is urged to use Google to search for an RPC example or 
programming information for his system since RPC implementa-
tions vary from system to system and an example that works on one 
system may not work on another system.

DISCLAIMER

While the examples herein are correct to the best of our knowledge, 
the user assumes all responsibility for their operation in his system.  
The authors are not responsible for the examples' operation.

ACKNOWLEDGEMENTS

The author wishes to thank B. Franksen at Bessy GmbH in Ger-
many for his paper 'VXI-11 and HP E2050'  Many of his ideas are 
presented in this Application Note.

Additional thanks to Bob Clemmons at Aerofl ex for his patience 
and SuSE example.


